Supply Agents in MATSim: Some Results

Francesco Ciari

IVT
ETH
Zürich

April 09

IVT
Institut für Verkehrsplanung und Transportsysteme
Institute for Transport Planning and Systems

ETH
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
Why supply agents in MATSim?

In the urban system actors of different kinds are interacting:

- Individuals
- Policy Makers
- Public service providers
- Developers
- Retailers
- Firms / companies
- ...

MATSim has the potential to incorporate an agent based representation of each actor of the urban system
Why supply agents in MATSim?

In the urban system actors of different kinds are interacting:

- Individuals
- Policy Makers
- Public service providers
- Developers
- Retailers
- Firms / companies
- ...

MATSim has the potential to incorporate an agent based representation of each actor of the urban system.

One of the few agent-based transport simulations which allows the dynamic interactions of demand side and supply side agents.
Current MATSim

Policy Makers
Public services providers
Developers
Retailers
Firms / companies

Individuals

Individual Agent

Scenario
MATSim with retailer agents

Policy Makers
Public services providers
Developers
Firms / companies

Scenario

Individuals
Retailers

Individual Agent
Retailer Agent
MATSim with retailer agents

Policy Makers
Public services providers
Developers
Firms / companies

Scenario

Individuals
Retailers

Individual Agent

Retailer Agent

?
Who are Retailers in MATSim?

from www.wikipedia.org:

Retailer: “In commerce, a retailer buys goods or products in large quantities from manufacturers or importers, either directly or through a wholesaler, and then sells smaller quantities to the end-user.”

In MATSim:

Retailer: “Person or entity having the control on one or more shopping facilities”
Choice Dimensions for Retailer agents

• Location
• Price
• Opening time
• ...
Choice Dimensions for Retailer agents

- Location
- Price
- Opening time
- ...

The retailer agent is controlling a group of shops and tries to improve their performance relocating them.
Goals & Tasks

Goals:

• Correctly predict the location choices of retailers under a given policy scenario
• Estimate a benchmark value for retailers (# customers, turnaround, etc…) under a given policy scenario
• Investigate what happens to individuals’ score if retailers are optimizing their location

Tasks:

• Define/implement retailer agents in the MATSim framework
• Enrich individual agents (customer aspect)
<table>
<thead>
<tr>
<th>Technique/s</th>
<th>Subjectivity</th>
<th>Cost</th>
<th>Technical experience required</th>
<th>Computing and data needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>rules of thumb, checklists, ratio and analogue methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>multiple regression discriminant analysis, cluster analysis, gravity models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expert systems, neural networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Hernandez and Benninson, 2000
Practice in Location Choices

Extensive literature research

11 explorative interviews accomplished in Germany and Switzerland in 2008

Results:

Location strategies vary both between and within different retail sectors
Location choices are still heavily based on experience and intuition, particularly those decisions at the micro scale
Simpler methodologies are still predominant, more sophisticated are sometimes used as a posterior confirmation
Retailer Agent Framework

Attributes
• Type
• Facility portfolio
• Price level
• ...

Location choice methodology
• Checklists
• Market ratio
• Catchment area
• Gravity models
• ...

Objective
• Max. Customers
• Max. Revenue
• Max. Market share

Knowledge
• Customers
• Competitors
• Land Prices
• Land use regulation
Retailer Agent Framework

Attributes
- Type
- Facility portfolio
- Price level
- ...

Location choice methodology
- Checklists
- Market ratio
- Catchment area
- Gravity models
- ...

Objective
- Max. Customers
- Max. Revenue
- Max. Market share

Knowledge
- Customers
- Competitors
- Land Prices
- Land use regulation
MATSim: Actual Framework

Data

Initial Demand Generation

Execution

Individuals Score

Relaxed Demand

MATSim-T

Individuals Replanning

Adapted from Rieser, 2008
Possible approaches

• Parallel (Co-evolution)

• Sequential with feedback
MATSim: Parallel approach

Adapted from Rieser, 2008
Parallel approach (Coevolution)

<table>
<thead>
<tr>
<th>Agent i</th>
<th>Plan 0</th>
<th>Plan 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan 1</td>
<td>Plan 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agent j</th>
<th>Plan 0</th>
<th>Plan 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan 1</td>
<td>Plan 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agent u</th>
<th>Plan 0</th>
<th>Plan 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan 1</td>
<td>Plan 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Agent v</th>
<th>Plan 0</th>
<th>Plan 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan 1</td>
<td>Plan 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>species i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individ. i,0</td>
</tr>
<tr>
<td>Plan 0</td>
</tr>
<tr>
<td>Individ. i,1</td>
</tr>
<tr>
<td>Plan 1</td>
</tr>
<tr>
<td>Individ. i,2</td>
</tr>
<tr>
<td>Plan 2</td>
</tr>
<tr>
<td>Individ. i,3</td>
</tr>
<tr>
<td>Plan 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>species j</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individ. j,0</td>
</tr>
<tr>
<td>Plan 0</td>
</tr>
<tr>
<td>Individ. ..</td>
</tr>
<tr>
<td>Plan ..</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>species u</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individ. u,0</td>
</tr>
<tr>
<td>Plan 0</td>
</tr>
<tr>
<td>Individ. ..</td>
</tr>
<tr>
<td>Plan ..</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>species v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individ. v,0</td>
</tr>
<tr>
<td>Plan 0</td>
</tr>
<tr>
<td>Individ. ..</td>
</tr>
<tr>
<td>Plan ..</td>
</tr>
</tbody>
</table>

```
person.removeWorstPlan()
```

```
retailer.removeWorstPlan()
```
Parallel approach – Relocation steps

A new random link is proposed

The retailer already owns a shop in this area

The ratio # residents / #shops in the new area is higher

The daily traffic volume on the new link is higher

Yes

Stay on the current link

No

Yes

Move to the new link

No

Refinements
Simulation Inputs and Parameters

Inputs:
- Retailers file:
 List of retailer agents and shop facilities controlled by them
- Links file
 - Links allowed for the relocation of shop facilities

Parameters:
- Frequency of retailers relocation
- Catchment area dimension
Parallel approach – Results

Simulation scenario: Zürich 10% (~60,000 agents, ~1000 shops, ~60,000 links)
Number of shops relocating: 80 (2 supermarket chains)
Parallel approach – Results (2)

• Results vary according to input and parameters

• At the moment iterations are quite slow (~1h)
MATSim: Sequential approach

Data

Initial Demand Generation → Execution → Score → Relaxed Demand

MATSim-T

Retailers Module

Individual Replanning

Adapted from Rieser, 2008
Sequential approach

1. Run the simulation until a relaxed state is reached

2. Use the data available to compute parameters of a gravity model for shops

3. Compute the potential for each of the candidate links

4. Use an optimization algorithm to find the best „constellation“ of shops

5. Exit if specific condition is fullfilled, otherwise go to 1
Gravity models

Idea: The attractiveness of a facility for individuals is proportional to the distance they need to travel to reach this facility

Advantages: Make use of data which are available in MATSim, is a method which is used in the practice

Shortcoming: Their goodness is always more discussed in the academic field
Savings algorithm

Idea: From a starting configuration different new combinations are tested, take the first which improves the score, used in VRPs

Advantages: Easy to implement, guarantees that at each step the score is improved

Shortcoming: Not fast
Parallel vs. Sequential

Parallel

+: Fully exploiting the potential of MATSim, the new agents are simulated within the main loop

?: Hard to understand the behaviour of such a complex co-evolutionary system (probably many iterations to reach a relaxed state)

Sequential

+: A proper optimization method can be used

-: Agents are simulated only in an external loop not within the main loop of MATSim
Main limitations

- The land market is not represented
- Introduction of monetary costs for activities and taking into account prices for them
- Retail shops are undifferentiated
- Persons behavior on Saturday is different than during the week - > Simulating only Mo-Fr retailers’ location decision are biased
- ...

...
Conclusions and future work

Conclusions:

• The new supply agents have been introduced in MATSim, their functionality has been proofed
• Results are not yet as expected...

Future work:

• Try to use new strategies (Sequential)
• Improve the current strategy (Parallel)
• Overcome some of the limitations (e.g. take into account different types of retail shops, account for monetary costs, etc...)
THANK YOU FOR YOUR ATTENTION!
MATSim: Actual framework

- **Initial demand**
- **Execution**
- **Scoring**
- **Analyses**
- **Replanning**

Fixed attributes

Utility function f(t)

Exit condition: "Relaxed state", i.e., equilibrium

Share x of agents (usually 10%):
Time, route, location choice
Framework with Retailer Agents – Static approach

- Initial demand
- Execution
- Scoring
- Analyses
- Retailer agents' facilities:
 - Location choice

Exit condition: “Relaxed state“, i.e. equilibrium

Fixed attributes

Utility function $f(t)$
Agent-based modeling
Agent-based modeling
Agent-based modeling
Agent-based modeling
Issues and possible solutions

Simulations with different combination of input parameters: No relaxation is observed

Real Optimization Technique (e.g. SA)?
Same story as before: Search space prohibitively large ...

Alternative: Adapt local search techniques ...
 • In each iteration
 • Outer loop
 → Replanning of person agents → relaxed state → local search
Savings algorithm

Idea: used in VRP, tests different combinations take the first which improves the score
Advantages: Easy to implement, guarantees that at each step the score is improved
Shortcomings: Not fast
Gravity models

Description:
Advantages: Make use of data which are available in MATSim, is a method which is really used in the practice
Disadvantage: Their goodness is always more discussed in the academic field
The problem of trying to optimize together different retailers types:

Ratio \#allowed / \#number of shops to be relocated
Different retailers types

Big retail-chains with few but large stores in one region (ex. IKEA)
 • Few available spots
 • Key:

Big retail-chains with many stores in one region (ex.
Issues related with the dynamic approach

Number of iterations (or process internal relaxation- external relaxation…)}
Individual Agent Framework

Current MATSim

Next Stage

Personal attributes
- Age
- Gender
- Home location
- Work location
- Driving License
- Car availability
- Transit tickets ownership

- Income
- Household

Location choice methodology
- Not optimized

- Optimized in time and space

Objective function
- Time based

- Utility based with budget constraints

Knowledge
- Memory of previous plans (score)

- Shop Attributes (Price, Quality, Parking, etc.)
Individual Agent Framework

Current MATSim

Next Stage

Individual Agent

Personal attributes
- Age
- Gender
- Home location
- Work location
- Driving License
- Car availability
- Transit tickets ownership

Location choice methodology
- Optimized in time and space

Objective function
- Time based
- Utility based with budget constraints

Knowledge
- Memory of previous plans (score)
- Shop Attributes (Price, Quality, Parking, etc.)
How different agents do interact?

Retailer Agent

Individual Agent
How different agents do interact?
How different agents do interact?
Importance of Location for Retailers