Evidence on the linkages between productivity, agglomeration economies, and transport

Institute for Transport Planning and Systems (IVT) Seminar, 7th May 2009

Patricia C. Melo
Centre for Transport Studies, Imperial College London
Contents

• Agglomeration economies and transport
• Estimating agglomeration economies
• Meta-analysis of previous empirical evidence
• Recent empirical evidence
• Agglomeration economies in transport appraisal
• Conclusions
Contents

• Agglomeration economies and transport
• Estimating agglomeration economies
• Meta-analysis of previous empirical evidence
• Recent empirical evidence
• Agglomeration economies in transport appraisal
• Conclusions
Agglomeration economies and transport

- Agglomeration economies are positive externalities that arise from the spatial concentration of economic activity.

- Main mechanisms that determine agglomeration economies (Marshall, 1920):
 - Knowledge spillovers.
 - Input-output linkages.
 - Labour market pooling spillovers.

- Traditionally, two types of agglomeration economies.
 - Localisation economies (importance of firm’s own “industry scale”).
 - Urbanisation economies (importance of “city/region scale”).
Agglomeration economies and transport

• Transport affects realization of agglomeration economies:
 – Transport affects access to economic activities (e.g. people-to-businesses, businesses-to-businesses).
 – Improved accessibility can reinforce agglomeration benefits.

• Transport impacts on productivity through agglomeration economies.

• Venables (2007; JTEP) shows there are productivity gains from urban transport improvements that arise through city size, which should be included in the cost-benefit appraisals of transport projects.
Figure 1c: Net gains from transport improvement with endogenous productivity

Contents

• Agglomeration economies and transport
• Estimating agglomeration economies
• Meta-analysis of previous empirical evidence
• Recent empirical evidence
• Agglomeration economies in transport appraisal
• Conclusions
Estimating agglomeration economies

(a) Wages and employment density
(306 employment areas, 1976-1996 average)

(b) TFP (Olley-Pakes) and employment density
(306 employment areas, 1994-2002 average)

Source: Combes et al. (2008) CEPR Discussion Papers 6728
Estimating agglomeration economies

Wages and employment density in UK Travel-to-Work Areas (average 1997-2006)

Source: Melo and Graham (2009).
Estimating agglomeration economies

Wages and market potential in UK Travel-to-Work Areas (average 1997-2006)

Source: Melo and Graham (2009).
Estimating agglomeration economies

- Some form of production function.

\[y = g(A)f(L,K), \quad L: \text{labour}, K: \text{capital}, A: \text{agglomeration economies} \]

- Where \(g(A) \) measures agglomeration economies, which affect total factor productivity.

- The marginal effect of agglomeration on productivity is obtained from \(\frac{\partial y}{\partial g(A)} \); the elasticity of output w.r.t to agglomeration is obtained from \(\frac{\partial \ln y}{\partial \ln g(A)} \).
Estimating agglomeration economies

• Under the standard assumption that factors are paid the value of their marginal products, workers will be paid higher nominal wages in more productive areas.

• The theory is that labour productivity gains result from workers becoming more productive in more agglomerated areas.

• Estimate the marginal effect of agglomeration on workers’ productivity $\frac{\partial w_L}{\partial g(A)}$; elasticity of wage w.r.t agglomeration is $\frac{\partial \ln w_L}{\partial \ln g(A)}$.
Contents

• Agglomeration economies and transport
• Estimating agglomeration economies
• Meta-analysis of previous empirical evidence
• Recent empirical evidence
• Agglomeration economies in transport appraisal
• Conclusions
Why a meta-analysis? (see Melo et al. 2009, RSUE)

- To explain the variability in the size of elasticities of productivity with respect to urban agglomeration.

What is a meta-analysis useful for?

- Nice way to summarise the key factors underlying the range of values found in the empirical literature (e.g. country, data, etc.).
- Can guide researchers in the choice of econometric method and model specification.
- Can provide an alternative measure for the measurement of wider economic benefits of transport projects.

Meta-analysis of elasticities of agglomeration
Meta-analysis of elasticities of agglomeration

• How is the meta-analysis performed?
 – Uses econometric models to identify sources of variation in the estimates of agglomeration effects.

\[
\hat{\varepsilon}_i = \varepsilon_0 + \sum_{j=1}^{J} \beta_j D_{ji} + \mu_i
\]

– Sources of variation \((D_{ji})\):
 • Period of analysis
 • Country
 • Measurement of urban agglomeration
 • Economic sector
 • Type of data
 • etc.
Meta-analysis of elasticities of agglomeration

• Results - main factors of variation relate to:

 – Not controlling for differences in human capital and localization tends to increase the size of elasticity.

 – The use of time invariant fixed-effects tends to reduce size of elasticity.

 – Service industries tend to have higher elasticities of urban agglomeration.

• There is some evidence supporting the presence of positive reporting bias in agglomeration estimates.
Contents

• Agglomeration economies and transport
• Estimating agglomeration economies
• Meta-analysis of previous empirical evidence
• Recent empirical evidence
• Agglomeration economies in transport appraisal
• Conclusions
Recent empirical evidence

• Firm level production functions.
 – UK (Dan Graham-IC, Ralf Martin & Steve Gibbons-LSE)
 – UK (Dan Graham, Kurt Van dender-ITF/OECD)
 – New Zealand (Dan Graham, Dave Mare-Motu)

• Worker level wage functions.
 – UK (Patricia Melo & Dan Graham)

• Agglomeration measured with *market potential* function of the type:

\[MP_r = \sum_j \frac{\text{emp}_j}{d_{rj}^\alpha} \]
Recent empirical evidence

- Firm level production functions.
 - UK (Dan Graham-IC, Ralf Martin & Steve Gibbons-LSE)
 - UK (Dan Graham, Kurt Van denber-ITF/OECD)
 - New Zealand (Dan Graham, Dave Mare-Motu)

- Worker level wage functions.
 - UK (Patricia Melo & Dan Graham)
Estimating productivity effects of agglomeration

- Studies based on extensive firm level panel data.
- Production function estimation with agglomeration measured as in previous slide.
- Several different models and estimation methods used.
Uncertainties associated with the typical estimation approach

- **Black box** - doesn’t really tell us anything about the sources of agglomeration.

- So we need to be careful about
 - **Potential confounders** - key issue is heterogeneity in the functions of industries (need to compare like with like).
 - **Endogeneity** - agglomeration and productivity may be simultaneously determined.

- Several different ways of doing this - typically based around IV, dynamic panel GMM, and FE approaches.

- We use a control function approach (see Martin 2005):
Results I - production function estimates

<table>
<thead>
<tr>
<th>industry</th>
<th>UK</th>
<th>NZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Retail</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Real estate</td>
<td>0.11</td>
<td>-</td>
</tr>
<tr>
<td>IT</td>
<td>0.07</td>
<td>-</td>
</tr>
<tr>
<td>Financial services</td>
<td>0.15</td>
<td>0.11</td>
</tr>
<tr>
<td>Business services</td>
<td>0.12</td>
<td>0.18</td>
</tr>
<tr>
<td>Whole economy</td>
<td>0.10</td>
<td>0.15</td>
</tr>
</tbody>
</table>

※ There is a positive association between productivity and agglomeration: service sector elasticities highest.
Recent empirical evidence

- **Firm level production functions.**
 - UK (Dan Graham-IC, Ralf Martin & Steve Gibbons-LSE)
 - UK (Dan Graham, Kurt Van dender-ITF/OECD)
 - New Zealand (Dan Graham, Dave Mare-Motu)

- **Worker level wage functions.**
 - UK (Patricia Melo & Dan Graham)
Empirical model and data (I)

- The econometric model:

\[
\ln w_{it} = \beta_0 + \sum_b \beta_b X_{b,it} + \sum_k \alpha_k Z_{k,rt} + \varepsilon_{it}
\]

- \(X_{b,it}\): age, age squared, gender, full-timer/part-timer, size of the firm where worker \(i\) works.

- \(Z_{k,rt}\): includes measures of agglomeration economies.

- In addition: indicator variables for occupations, years, industry groups.
Empirical model and data (II)

• Annual Survey of Hours and Earnings (ASHE)
 – Worker’s hourly wage, gender, age, work status, occupation, industry, employer’s firm size. No education!
 – Start with 1,559,719 observations: cleaning of missing records and errors reduces size to 1,378,048 observations.

• Final dataset:
 – Unbalanced panel of 289,729 workers.
 – On average each worker is observed 4.76 times.
Results - aggregate effects

• Doubling the market potential of a given labour market can increases worker earnings by around 2.8%.

• Effect of agglomeration externalities is sensitive to whether one accounts for (i) spatial sorting, (ii) reverse causality:
 I. Controlling for workers’ spatial selection more that halves the elasticity: 5.2% (POLS) vs. 2.1% (WG-FE).
 II. correcting for simultaneity endogeneity produces an instrumental variables elasticity estimate of 2.8%.
Results - sectoral heterogeneity

<table>
<thead>
<tr>
<th>industry</th>
<th>FE-IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary</td>
<td>-</td>
</tr>
<tr>
<td>manufacturing</td>
<td>0.010</td>
</tr>
<tr>
<td>electricity, gas & water</td>
<td>-</td>
</tr>
<tr>
<td>construction</td>
<td>0.014</td>
</tr>
<tr>
<td>wholesale & retail</td>
<td>-</td>
</tr>
<tr>
<td>hotels & restaurants</td>
<td>-</td>
</tr>
<tr>
<td>transport, storage & communication</td>
<td>0.026</td>
</tr>
<tr>
<td>financial intermediation</td>
<td>0.018</td>
</tr>
<tr>
<td>real estate</td>
<td>-</td>
</tr>
<tr>
<td>renting, IT, R&D</td>
<td>0.026</td>
</tr>
<tr>
<td>other business activities</td>
<td>0.024</td>
</tr>
<tr>
<td>public services</td>
<td>0.028</td>
</tr>
</tbody>
</table>

- Effects of agglomeration economies on workers’ hourly wages are stronger for service industries.
Results - spatial decay of agglomeration effects

\[
\ln w_{it} = \beta_0 + \sum_b \beta_b X_{b, it} + \text{emp}_{j(it)} + \sum_{k=1}^{10} \alpha_k \sum_p w_{jp(k) \text{emp}_{p(it)}} + \varepsilon_{it}
\]

with \(d_{jp}(k)\) the distance in kilometres between each pair of wards and \(d_{jp}(0)=0\).

\[
w_{jp}(k) = \begin{cases}
1 & \text{if } d_{jp}(k-1) < d_{jp} \leq d_{jp}(k) \\
0 & \text{otherwise}
\end{cases}
\]

\[
d_{jp}(k) = \begin{cases}
5 (5) 25 \text{ kilometres for } k = 1 (1) 4 \\
25 (25) 150 \text{ kilometres for } k = 5 (1) 10
\end{cases}
\]
20-25 km
Results - spatial decay of agglomeration effects

• Effects are significant up to 15km: +100,000 jobs within 5km raises wages by 0.44%. The increase is 33% (60%) smaller if the additional jobs occur 5 (10) km away.

• Spatial scale? Spillover effects from agglomeration externalities are likely to occur within labour markets - knowledge spillovers & labour market pooling.

• Implications for transport policy? Can inform about the area of influence of transport schemes by offering a “boundary” for the real scope of the effects from agglomeration.
Contents

- Agglomeration economies and transport
- Estimating agglomeration economies
- Meta-analysis of previous empirical evidence
- Recent empirical evidence
- Agglomeration economies in transport appraisal
- Conclusions
Which Wider Impacts in Appraisal?

- Productivity Impacts from Agglomeration.
- Productivity Impacts from Labour Participation
- Productivity Impacts from Labour Relocation
- Welfare gains from Increased Output in Imperfectly Competitive Markets.

What else?
- FDI, Trade impacts on productivity

Source: Slides are from Vicky Cadman, Department for Transport (DfT). TEG Seminar March 2009.
How the evidence is used: agglomeration example

- Largest WIs – most work in developing evidence
- Cities – big ones in particular – are very productive
- Geographical aspect: so advice on where matters.

1. Estimate base and alternative generalised costs and trip numbers
2. Estimate base and alternative level of effective density - agglomeration
3. Estimate impacts of productivity – Dan Graham’s elasticity estimates
4. Land use changes (LUTI models)

Source: Slides are from Vicky Cadman, Department for Transport (DfT). TEG Seminar March 2009.
Agglomeration economies in transport appraisal

• To calculate the wider economic benefits due to agglomeration externalities we need:
 – Transport cost from & within areas with and without the scheme (from DfT transport models and trip matrices).
 – Changes in level of agglomeration (employment density/market potential measure) due to transport intervention (*idem*).
 – Elasticity of productivity with respect to agglomeration (from Dan Graham estimates).
 – The level of output in the agglomerated sectors (from ONS).

• Wider economic benefit of agglomeration =
 \[= \text{[elasticity of productivity w.r.t agglomeration]} \times \text{[variation in agglomeration due to transport intervention]} \times \text{[GDP]}\].
Advice on Appraisal Requirements: Maps built on transport data and economic relationships

- Considering appraisal burden

- Maps identify where to look for schemes with agglomeration

- Impacts may not be high for all schemes covering a blue area – ‘Decay function’ still captures decline across distance in the estimation.

- Not dealing with inter-urban schemes here.

- Focussed on ‘urbanisation’ economies. Care not to miss ‘localisation’.

Source: Slides are from Vicky Cadman, Department for Transport (DfT). TEG Seminar March 2009.
Agglomeration economies in transport appraisal

• Simulation analysis by DfT shows that transport intervention (e.g. - £0.01 in all journeys) produces different degrees of agglomeration benefits:
 – Effects are lower for seaports than for airports, in particular airports close to London.
 – Effects are stronger for financial business cluster in London than other businesses.
 – Effects are stronger for London and cities in and around largest conurbations in the UK.

• Limitations of the exercise:
 – No account for land use changes.
 – No consideration of costs of achieving transport improvement.
Applying the new appraisal to CrossRail (DfT calculations)

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Welfare (£ million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business time savings</td>
<td>4,847</td>
</tr>
<tr>
<td>Commuting time savings</td>
<td>4,152</td>
</tr>
<tr>
<td>Leisure time savings</td>
<td>3,833</td>
</tr>
<tr>
<td>Total user benefits (conventional)</td>
<td>12,832</td>
</tr>
<tr>
<td>Agglomeration benefits</td>
<td>2,440</td>
</tr>
<tr>
<td>Total benefits (inc agglom)</td>
<td>15,272</td>
</tr>
</tbody>
</table>

Source: DfT.
Appraisal of additional benefits from agglomeration

<table>
<thead>
<tr>
<th>Mode</th>
<th>Scheme</th>
<th>Agglomeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail</td>
<td>Crossrail</td>
<td>19%</td>
</tr>
<tr>
<td>Road</td>
<td>Leeds to Bradford Improved Highway</td>
<td>21%</td>
</tr>
<tr>
<td>Road</td>
<td>Leeds Urban Area Improved Highway</td>
<td>22%</td>
</tr>
<tr>
<td>PT</td>
<td>Leeds to Bradford PT Improvements</td>
<td>15%</td>
</tr>
<tr>
<td>Bus</td>
<td>Intra Leeds bus subsidy</td>
<td>11%</td>
</tr>
<tr>
<td>Road</td>
<td>Leeds to Sheffield Improved Highway</td>
<td>19%</td>
</tr>
<tr>
<td>Road</td>
<td>M6 shoulder</td>
<td>12%</td>
</tr>
<tr>
<td>Bus</td>
<td>West Yorkshire County bus subsidy</td>
<td>9%</td>
</tr>
<tr>
<td>PT</td>
<td>Leeds Urban Area Major PT Investment</td>
<td>9%</td>
</tr>
<tr>
<td>Bus</td>
<td>South & West Yorkshire Bus subsidy</td>
<td>7%</td>
</tr>
<tr>
<td>Bus</td>
<td>South Yorkshire bus subsidy.</td>
<td>3%</td>
</tr>
</tbody>
</table>

Source: Steer Davies Gleave values.
Contents

• Agglomeration economies and transport
• Estimating agglomeration economies
• Meta-analysis of previous empirical evidence
• Recent empirical evidence
• Agglomeration economies in transport appraisal
• Conclusions
Conclusions I

• Evidence confirms the existence of positive productivity gains from agglomeration economies.

• Effects of agglomeration are likely to be stronger within the borders of labour markets.

• Transport affects agglomeration and produces externalities that are not measured in a standard cost benefit appraisal.
Conclusions II

- Impact from agglomeration externalities differs across transport scheme and area and can be quite significant: e.g. Crossrail: increase conventional benefits by apr. 20%.

- Effects tend to be higher for urban network schemes, also relevant for international gateways, and smaller for inter-urban network schemes.
Directions for future research

• DfT interested in understanding the sources better because it provides guidance about which type of transport schemes to appraise for agglomeration effects.

• Identifying the relative importance of the difference sources of agglomeration externalities allows identifying the journey purpose transport policy makers should be focusing on:
 • If IO linkages are more important – focus on freight transport.
 • If LM pooling is more important – focus on commuting.
 • If KS are more important – focus on business trips.
References

MELO, P. C., GRAHAM, D. J. (2009) Agglomeration economies and labour productivity: evidence from longitudinal worker level data for Great Britain’s Travel-to-Work Areas. (ongoing work)

Thank you!

patricia.melo@imperial.ac.uk