

Any Given Monday An exploration of the stability of long term activity patterns

Steven Farber – McMaster University Antonio Páez – McMaster University Kay Axhausen – ETH Zurich

stitute for Transport Planning and Systems

Eidgenössische Technische Hochschule Zürich nstitut für Verkehrsplanung und Transportsysteme Swiss Federal Institute of Technology Zurich

Background

 Analysis of transportation systems has adopted more ideas from the activity paradigm

We now recognize that travel is a derived demand from participating in activities

 Activity analysis is based on extended forms of travel surveys

Background

 Activity / Travel diaries are typically 1 or 2days long in the time dimension

How constant are activities? How much variability in behaviour is there over extended periods of time?

 With newer data collection exercises, it now becomes possible to study activity behaviour over longer periods of time

Objectives:

Do we have any concept of how well the surveyed day represents the respondents' usual routine?

Is a surveyed Monday just like any other Monday? Is it just like any other Weekday?

 Determine if a 1-day sample is representative of a respondent's typical travel behaviour for that day? For any weekday?

Data

230 respondents
99 households
6 weeks per respondent
36761 Episodes
8462 person-days

Frauenfeld City in Canton Thurgau, and Seerucken area to the north

Methodology

Challenge

How do we quantify between-day similarities in observed behaviour?

 Potential Solution: Multi-level models is a natural way of finding similarities between days. This would require information about days.

Solution

Identify "similar" observations and check for correlation

Model behaviour as a function of personal characteristics

Model the residual correlation

Methodology

- The contiguity matrix as an exploratory and analytical tool
- W(i,j)=1 if observation i and j are related
- 1. Person If observation i and j are the same respondent
- 2. PersonDay If observation i and j are the same respondent and same day of week
- PersonWeek If observation i and j are the same respondent and same week
- PersonWeekday If observation i and j are the same respondent and both Mon-Fri
- 5. PersonWeekend If observation i and j are the same respondent and both Sat-Sun

What does the W matrix look like?

What does the W matrix look like?

Exploration

- If W matrix is row-standardized, ie: every row sums to 1, then Wy is a vector of neighbourhood averages around each observation
- The observed values, y, can be plotted against Wy and examined for correlation
 Anselin Moran Scatterplot
- Let Y be daily distance travelled A summary measure of personal mobility

y vs Wy using the PersonDay Matrix

Observed Distance Travelled

Moran Scatterplot with Least Square Fit

Moran's I Coefficients for Raw Data

$I = \frac{c}{c}$	orrelated variation	$Y'_{s}WY_{s}$	
1 — —	total variance	ce –	$Y_{s}Y_{s}$
	Person	0.25	
	PersonDay	0.35	
	PersonWeek	0.26	
	PersonWeekday	0.19	
	PersonWeekend	0.07	

Day on Day correlations stronger than Type of Day correlations \rightarrow a Monday IS a Monday more than just a weekday

A weekend observation is almost uncorrelated to other weekend observations

Model Variables

Daily Distance Travelled

Summary measure of overall mobility

Demographic

Frauenfeld or Seerucken
Age
Gender
Partner

- > Partner
- > Employment Status
- Income Class
- Household Composition
- Housing Tenure

Model Variables

Activity/Transportation Behaviour

- > Work-Hours
- Motor Vehicles At Home
- > Average Daily Trips: Mode Choice
 - Public Transport
 - Motorized Individual
 - Non-Motorized
- > Average Daily Trips: Purpose
 - For Business
 - Personal Business
 - For Leisure

Variables

Walkability of residence

- > Within a 10 minute walk of:
 - kindergarten
 - doctor's office
 - bank
 - bus stop
 - rail station
 - close friends or relatives

OLS Regression Model

Variable	Coefficient	t-statistic	Probability	Variable	Coefficient	t-statistic	Probability
Constant	13.68	9.57	0.0000	n_o_mv	0.46	3.62	0.0003
Seerucken	1.57	4.56	0.0000	t_ratoev	2.11	5.91	0.0000
age	0.06	3.81	0.0001	t_ratmiv	-2.44	-12.26	0.0000
Under19	-3.38	-4.52	0.0000	t_ratl∨	-3.25	-16.60	0.0000
Over65	-1.79	-2.34	0.0195	t_ratson	-4.06	-6.68	0.0000
partner	-1.38	-2.72	0.0066	rat_gesc	2.82	6.52	0.0000
EmpFull	1.35	2.26	0.0238	rat_frei	2.45	6.35	0.0000
EmpPart	1.25	2.44	0.0147	rat_erle	2.23	2.77	0.0056
n_o_wh	0.07	5.39	0.0000	walk_kin	-1.19	-2.93	0.0034
INC1	-6.70	-3.31	0.0009	walk_doc	1.56	3.75	0.0002
INC2	-5.84	-5.65	0.0000	walk_ban	-2.02	-5.15	0.0000
INC3	-4.24	-4.50	0.0000	walk_bus	2.05	4.46	0.0000
INC4	-6.30	-7.77	0.0000	walk_rai	2.85	6.96	0.0000
INC5	-2.34	-5.41	0.0000	walk_rel	-1.05	-3.29	0.0010
INC6	0.45	1.24	0.2156				
n_o_hha	-1.99	-7.02	0.0000			Currana any Ci	
n_o_hh6	-4.89	-3.05	0.0023			R-squared	= 0.1710
n_o_hh12	0.56	2.04	0.0410			sigma^2	= 140.1282
rented	0.68	1.85	0.0646			Nobs, Nvars	= 8462, 33

Residuals – Moran Scatterplot

Residual Autocorrelation

Person	0.10
PersonDay	0.22
PersonWeek	0.12
PersonWeekday	0.09
PersonWeekend	0.04

Moran's I coefficients suggest there is an unobserved correlation structure between observations

(Spatial) Model Options

(Spatial) Error Model

$$Y = X\beta + u$$
$$u = \lambda Wu + \varepsilon$$

Implies that we are missing information on observations that are somehow related

SEM Results

Specification	Log-Likelihood	R-Squared	Sigma-Squared	lambda	Probability
Person	-29693	0.23	129.0	0.56	0 9700
	27070	0.20	127.0	0.00	0.7700
PersonDay	-29654	0.25	126.0	0.32	0.0000
PersonWeek	-29847	0.20	134.0	0.23	0.0000
PersonWeekday	-29746	0.22	130.7	0.54	0.0000
PersonWeekEnd	-29945	0.18	138.5	0.25	0.0000

- 1. Improved model fit indicated by R-Square increase and reduction in variance of the estimates
- 2. Insignificant Person on Person error autocorrelation, individual characteristics are well-described by covariates in the model
- 3. Weekday and Weekend correlation is much stronger than previously indicated

Future Work

- Decomposition of the correlation coefficients into LISA statistics to explore the factors that cause some people to have more consistent activity patterns compared to others
 - Are some people typically atypical?
- Extend the analysis to other summary measures such as coded DAP's or durations of different activity types
- Convert findings into an improved understanding of behavioural patterns. Would be nice to know how many days are necessary to capture "weekday", a "weekend day", a "Tuesday" etc

Questions?