R. Schlich, A. Simma and K.W. Axhausen (2002)
 Destination choice modelling for different leisure activities, 2nd Swiss Transport Research Conference 2002, Ascona, March 2002.

Destination choice modelling for different leisure activities

R Schlich, A Simma and KW Axhausen

IVT ETH Zürich

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

February 2002

Leisure is the most important trip purpose 40 % of all trips (work: 23 %) 44 % of all person kilometres (SA: 62%, SU: 76%)

Leisure traffic is a major contributor to the negative effects of motorised traffic.

Leisure trips are very heterogeneous.

Leisure trips: Little attention in travel modelling practice

More information about destination choice within Switzerland:

- Influence of natural environment
- Influence of infrastructure facilities
- Influence of distance between origin destination
- Dependency on leisure purpose

Choice between destination = Choice between discrete alternatives→ Discrete choice models

Assumption: Persons are trying to maximise their utility U.

$$U_{jq} = V_{jq} + \varepsilon_{jq}$$

$$V(X_{kjq}) = \alpha_j + \sum \beta_{k''j} p_{k''q} + \sum \beta_{k'j} s_{k'q} + \sum \beta_{kj} x_{kjq}$$

The Multinominal Logit (MNL) is used.

Assumptions:

- ε_{jq} is independent and identically gumbel distributed
 (→ IIA-property).
- Utility function is linear-in parameters.

Leisure consists of very different activities which satisfy different desires and are influenced by different impacts.

 \rightarrow Necessity to concentrate on different types of leisure

Three different activity groups were selected:

- Skiing
- Climbing and hiking
- Walking and swimming

Demand side

KEP ('Kontinuierliche Erhebung zum Personenverkehr'): 17'000 persons, one week trip diary, trips over 3 km'Zusatzmodul Reiseverhalten':

7'300 persons, excursions within the last two weeks 'Mikrozensus Verkehr 2000' (only for skiing model): 29'407 persons, one day trip diary

Supply side

Detailed database at the municipality level (2'900 municipalities)

- demographics
- spatial structure
- leisure infrastructure
- tourism
- economy

Problem: Destinations are sometimes not equal with municipalities.

Destination choice - large number of alternatives

 \rightarrow Necessity to draw a (random) sample of non-chosen alternatives

1 chosen alternative + 9 non-chosen alternatives

Non-chosen alternatives dependent on leisure types:

- Skiing skiing resorts
- Climbing and hiking municipalities located over 800 meters
- Walking and swimming municipalities located below 600 meters, not being a town

Skiing: objective factors, like price level, number of lifts, snow conditions or length of tracks, and a subjective assessment of the quality of the skiing resorts

Climbing and hiking: Area [ha] with different vegetation types, sport facilities, employees in gastronomy facilities

Walking and swimming: Area [ha] with different vegetation types, sport and cultural facilities, employees in gastronomy facilities

Skiing model: t-statistics

	distance incl.	not incl.
Log(distance)	-19	
Mountain area [ha]	7	8
Inh. at destination/inh. at origin	-2	-2
Belonging to the skiing area	5	4
Price for a one week ticket	3	3
Quality of alpine skiing area	-2	-4
Quality of après-ski	6	3
Quality of hiking paths	-3	-3
Employees in boutiques	3	3
Number of indoor pools	6	8
Number of indoor courts	3	4
Number of ice skating facilities	5	5
Log likelihood function (β)	-914	-1'266
R ²	0.45	0.23

	not chosen alternative	chosen alternative
Log(distonce)	2.09	5 1 5
Log(distance)	2.90	-9.19
Mountain area [ha]	-0.19	0.19
Price for a one week ticket	-0.68	0.83
Quality of alpine skiing area	0.36	-0.43
Quality of après-ski	-0.68	0.83
Number of indoor pools	-0.28	0.21

	distance incl.	not incl.
Log(distance)	-18	
Height of municipality	5	1
Area with open forest [ha]	-2	-4
Area with bushes [ha]	3	3
Area with copses [ha]	5	6
Area without vegetation	2	1
Area with meadows	-4	-7
Hiking paths [km]	2	4
Employees in gastronomy facilities	2	5
Number of baths in lakes	3	3
Number of outdoor pools	4	6
Log likelihood function (β)	-266	-985
R ²	0.80	0.25

Climbing and hiking model: t-statistics

	distance incl.	not incl.
Log(distance)	-45	
Number of inhabitants	-4	15
Area with closed forest [ha]	2	1
Area with parks [ha]	7	3
Inh. at destination/inh. at origin	-4	-14
Hiking paths [km]	8	8
Employees in gastronomy facilities	4	-0
Number of cultural facilities	3	2
Number of baths in lakes	10	11
Number of outdoor pools	13	15
Log likelihood function (β)	-1'378	-5'340
R ²	0.81	0.28

Walking and swimming model: t-statistics

General results:

- Decisive importance of distance
- Very low influence of person variables (used in conjunction with generic variables)

Specific results:

- **Skiing** availability of entertainment and additional sport facilities more important than skiing supply itself
- **Climbing and hiking** people appreciate a good leisure infrastructure and for Alpine regions typical vegetation types
- Walking and swimming distance very important, infrastructure more important than nature

Interpretation

Main results:

- Importance of distance
- Importance of varied infrastructure

Is this a proof of the necessity for further infrastructural extensions?

No: In this analysis was no place for smaller innovations and niches.

Yes: Competition between destinations is becoming fiercer.

Consideration of additional surveys: 'Mikrozensus 2000', 'Reisemarkt'

Consideration of other leisure types, e.g. visiting friends,

Weighting of alternatives for the choice set

Other model types:

- Nested Logits Relaxation of assumption of independence across alternatives
- Nested Logits with mode choice
- RPL (Random Parameters Logits) Relaxation of assumption of unique parameter values