Preferred citation style for this presentation

An Agent Based Micro-Simulation of PHEVs

Rashid A. Waraich

IVT
ETH
Zurich

October 2010
Two part of Presentation

- Overview of MATSim – An agent-based traffic simulation tool
- Current work: A framework to investigate PHEVs (based on MATSim).
Some requirements of PHEV research community

- Electricity demand changing in terms of location and time of day
 - charging power/speed can vary between locations
 - Influence/bottlenecks in lower voltage grid?
- Need to distinguish electric vehicles and PHEV
 - PHEVs more flexible due to gasoline tank
- Vehicles with batteries could potentially supply the grid (V2G, V2H)
 - What is the role of battery size in terms of V2G and emissions
- Ability to incorporate individual agent’s preferences
 - E.g. parking price, distance, income, location
- Government policy (e.g. Parking advantage for electric vehicles, street tolls)
- Fleet modelling: Emissions analysis (e.g. green house gas emissions after change of a policy)
Some requirements of PHEV research community (cont’d)

• Charging Schemes
 • Decision by agents (manually)
 • Decisions by electric grid (e.g. smart grid)
 • Decisions by on board computer of cars (automatically)
 • E.g. based on current state of charge, distance to next destination(s), charging price (changing over the day), parking duration, max unchargable state
• Energy Exchange (buying and selling electricity)
• Analyzing black outs (focusing on detailed analysis instead of on rough numbers)
• ...

=> The proposed PHEV framework helps answering such questions. Many of these features have already been implemented.
PHEV Framework Overview (Core Modules)

Vehicle energy consumption regression model (LAV) → Vehicle (e.g. conventional vehicles, EV, PHEVs) (includes vehicle charging policy) → Decentralized smart charging → Energy management module (incl. charging strategy) → Energy output module

Swapping stations → Infrastructure information/boundary conditions: Electric plug power, electricity price, parking type, etc. → Energy exchange → Vehicle fleet composition

Energy management module

- Immediatly start charging
- Dual tariff charging
- Centralized smart charging

Energy price scoring module → General feedback module (e.g. price signal feedback from PSL)
PHEV Framework Overview (Vehicle Types)

- Conventional Vehicles: Just how much they drive and along which streets => spacial map of emissions
- EV and PHEVs: Keeping track of driving and charging of battery
- Vehicle energy consumption: Regression model for different types of vehicles in Switzerland (LAV)
Charging Strategies

- Completed work on individual charging patterns:
 - Charge immediately upon arrival at location
 - Charge if high price during the day and low price during the night
 - Simulate a possible smart grid (centralized version)
- Scenario dependent
 - e.g. only home charging
 - e.g. home and work charging
 - different types of plugs/changing speed
Centralized Smart Charging (Smart Grid)

- Driving information, parking locations and durations (from MATSim)
- Grid constraints (from PMPSS)

Central Smart Entity

Assign charging times
Plugging-in Feedback Module into PHEV Framework

PHEV Framework

- Initial demand
- Simulation
- Charging module
- Scoring
- Relaxed demand
- Replanning
- PMPSS

grid constraint violations? charging demand information
Joint Experiments (IVT – PSL)

- Test experiments conducted in October 2009
 - Matthias Galus will present later
- At the moment we are working on setting up a scenario for the city of Zürich (November 2010)
 - 10’s of GB of RAM required
Work in Progress and Future Work

- Decentralized smart grid
- Energy exchange
- Swapping stations
- Integration of general energy source/storage concept (e.g. solar panels)
Questions?