Axhausen, K.W. (2011) Leveraging GIS-data: The case of transport modeling, 12th GITEX conference, Singapore, May 2011.

Leveraging GIS-data: The case of transport modeling

KW Axhausen

IVT ETH Zürich

May 2011

FUTURE CITIES LABORATORY

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

What is the question for transport planning?

Which network ? What grammars ?

Ahmedabad

Which network ? What grammars ?

Portland, OR

Which network ? What grammars ?

Irvine

What task does transport planning have as a science?

Who, were, when, why, and how?

and with an even higher spatial resolution

Learning approach of the generic transport model

Read scenario Generate initial demand (schedules)

Do until convergence

Select schedule to execute with a biased random approach Execute schedules (traffic flow simulation) Score all executed schedules Add a new schedule to a random subset of the agents Delete worst schedule, if necessary Population: Census-based (sample); Through traffic from surveys

Number, type, sequence and duration of activities:

- Conditional random draw from observed categorised MZ 2000-2005 distributions by person type
- Location of work/school activity:
 - Census commuter matrix
- Location of secondary activities:
 - Random constrained selection or
 - Capacity-constrained MNL within a time-space prism
 - Mode choice:
 - MZ-based subtour MNL
 - Route choice:
 - Improved A* shortest path

Capacity constrained MNL with time-space prism

Mode choice: Subtour

Number and type of activities Sequence of activities

- Start and duration of activity
 - Random mutation
 - Planomat: GA optimiser
- Composition of the group undertaking the activity
- Expenditure division
- Location of the activity
 - Location of access and egress from the mean of transport
 - Parking type
 - Vehicle/means of transport
 - Route/service
 - Group travelling together
 - Expenditure division

MATSim in Switzerland: Traffic flow simulation

- Disaggregate simulation of car traffic
 - (Detailed signal control)
 - Detailed parking facilities
 - Detailed recharging facilities for electric vehicles
- Disaggregate simulation of public transport
- Disaggregate simulation of cyclists
- Disaggregate simulation of pedestrians

2009 MATSim Switzerland: 10⁶ agents, links and facilities

Iteration

Balmer, 2009

Quality of the results: Overall counts

Quality of the results: A1 at Winterthur (no transit traffic)

Next steps in Singapore for "Future Cities Laboratory"

Module VIII: Mobility and transport

- Implementing MATSim for Singapore
 - Networks
 - Facilities
 - Behaviour
- New methods
 - Optimal pricing
 - Longer term choices and supply responses
 - Social networks and their impacts
 - Based on a new survey in Singapore

Implementing MATSim: Access with 1/without transfer

Data: Google feed

Implementing MATSim: HDB and private housing

Implementing MATSim: Comparing the daily patterns

Trips involving bus and LRT or MRT

Implementing MATSim: Derived "waits" [min]; NS line

STN Marina Bay					
STN Raffles Place					
STN City Hall					
STN Dhoby Ghaut					
STN Somerset					
STN Orchard					
STN Newton					
STN Novena					
STN Toa Payoh					
STN Braddell					
STN Bishan					
STN Ang Mo Kio					
STN Yio Chu Kang					
STN Khatib					
STN Yishun					
STN Sembawang					
STN Admiralty					
STN Woodlands					
STN Marsiling					
STN Kranji					
STN Yew Tee					
STN Choa Chu Kang					
STN Bukit Gombak					
STN Bukit Batok					
STN Jurong East		 			

Challenges for the Singapore implementation

- Further data enrichment, e.g.
 - Population distribution
 - School catchment areas
 - Fuller description of the destinations
 - Full day diary
 - Freight traffic
- New capabilities, e.g.
 - Mode and destination choice under ERP
 - Longer term demographics of families (and firm)
 - Residential choice
 - Optimal pricing (ERP, public transport, parking)

Challenges for MATSim

- Content:
 - Integration of social networks
 - Their location
 - Their interaction
 - Supply side responses beyond pricing
 - Fully stage-based implementation
- Computation
 - Reduction of computation times
 - Parallel multi-modal flow simulation
 - Non-equilibrium updating

www.matsim.org@ (ETH) Zürich, TU Berlin, Singapore

Dr. Michael Balmer

Dr. David Charypar Dr. Nurhan Cetin Artem Chakirov

Yu Chen Francesco Ciari Christoph Dobler **Dr. Alexander Erath**

Dr. Matthias Feil Dr. Gunnar Flötteröd

Pieter Fourie

Dr. Christian Gloor Dominik Grether Dr. Jeremy K. Hackney Andreas Horni Johannes Illenberger

Gregor Lämmel Nicolas Lefebvre Konrad Meister Manuel Moyo Kirill Müller Andreas Neumann Thomas Nicolai Benjamin Kickhöfer Sergio Ordonez Dr. Bryan Raney

Dr. Marcel Rieser Dr. Nadine Schüssler Dr. David Strippgen

Michael Van Eggermond

Rashid Waraich Michael Zilske

www.matsim.org

www.ivt.ethz.ch