Leveraging GIS-data: The case of transport modeling

KW Axhausen

IVT
ETH
Zürich

May 2011
What is the question for transport planning?
Which network? What grammars?

Ahmedabad

Source: Jacobs, 1993
Which network? What grammars?

Portland, OR

Source: Jacobs, 1993
Which network? What grammars?

Irvine

Source: Jacobs, 1993
What task does transport planning have as a science?
Who, were, when, why, and how?
and with an even higher spatial resolution
Starting point
Learning approach of the generic transport model

Competition for slots on networks and in facilities

Activity scheduling

Mental map

\[q_i \equiv (t,r,j)_{i,n} \]

\[k(t,r,j)_{i,n} \]
One approach: MATSim
MATSim evolutionary process

Read scenario
Generate initial demand (schedules)

Do until convergence

Select schedule to execute with a biased random approach
Execute schedules (traffic flow simulation)
Score all executed schedules
Add a new schedule to a random subset of the agents
Delete worst schedule, if necessary
MATSim in Switzerland: Initial demand

Population: Census-based (sample); Through traffic from surveys

Number, type, sequence and duration of activities:
• Conditional random draw from observed categorised MZ 2000-2005 distributions by person type

• Location of work/school activity:
 • Census commuter matrix

• Location of secondary activities:
 • Random constrained selection or
 • Capacity-constrained MNL within a time-space prism

• Mode choice:
 • MZ-based subtour MNL

• Route choice:
 • Improved A* shortest path
Capacity constrained MNL with time-space prism

Based on PPA-Algorithm Scott, 2006

„Implicit choice sets“
E.g.: Chains of consecutive shopping activities → recursion

\[r = \frac{t_{budget}}{2} \ast V \]

Random choice
Check \(\sum t_{travel} \leq t_{budget} \)
Mode choice: Subtour

Subtour 1

Subtour 2

Subtour 3
MATSim in Switzerland: Iteration

Number and type of activities
Sequence of activities

- Start and duration of activity
 - Random mutation
 - Planomat: GA optimiser
- Composition of the group undertaking the activity
- Expenditure division
- Location of the activity

- Location of access and egress from the mean of transport
 - Parking type
- Vehicle/means of transport
- Route/service
- Group travelling together
- Expenditure division
MATSim in Switzerland: Traffic flow simulation

- Disaggregate simulation of car traffic
 - (Detailed signal control)
 - Detailed parking facilities
 - Detailed recharging facilities for electric vehicles

- Disaggregate simulation of public transport

- Disaggregate simulation of cyclists

- Disaggregate simulation of pedestrians
2009 MATSim Switzerland: 10^6 agents, links and facilities
Quality of the results: Overall counts
Quality of the results: A1 at Winterthur (no transit traffic)
Next steps in Singapore for “Future Cities Laboratory”
Module VIII: Mobility and transport

• Implementing MATSim for Singapore
 • Networks
 • Facilities
 • Behaviour

• New methods
 • Optimal pricing
 • Longer term choices and supply responses
 • Social networks and their impacts
 • Based on a new survey in Singapore
Implementing MATSim: Access with 1/without transfer

Red: Direct from Treasury Auditorium; Green: 1 transfer
Implementing MATSim: HDB and private housing

Light brown: HDB; dark brown: Private
Implementing MATSim: Comparing the daily patterns

Data: travel diary 2008; public transport for one day in 2010

Trips involving bus and LRT or MRT
Implementing MATSim: Derived “waits” [min]; NS line

Waiting Times for North South MRT Line

<table>
<thead>
<tr>
<th>Station</th>
<th>Waiting Time [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>STN Marina Bay</td>
<td>5.5</td>
</tr>
<tr>
<td>STN Raffles Place</td>
<td>5.0</td>
</tr>
<tr>
<td>STN City Hall</td>
<td>4.5</td>
</tr>
<tr>
<td>STN Dhoby Ghaut</td>
<td>4.0</td>
</tr>
<tr>
<td>STN Somerset</td>
<td>3.5</td>
</tr>
<tr>
<td>STN Orchard</td>
<td>3.0</td>
</tr>
<tr>
<td>STN Newton</td>
<td>2.5</td>
</tr>
<tr>
<td>STN Novena</td>
<td>2.0</td>
</tr>
<tr>
<td>STN Toa Payoh</td>
<td>1.5</td>
</tr>
<tr>
<td>STN Braddell</td>
<td>1.0</td>
</tr>
<tr>
<td>STN Bishan</td>
<td>0.5</td>
</tr>
<tr>
<td>STN Ang Mo Kio</td>
<td>0.0</td>
</tr>
<tr>
<td>STN Yio Chu Kang</td>
<td>0.0</td>
</tr>
<tr>
<td>STN Khatib</td>
<td>0.0</td>
</tr>
<tr>
<td>STN Yishun</td>
<td>0.0</td>
</tr>
<tr>
<td>STN Sembawang</td>
<td>0.0</td>
</tr>
<tr>
<td>STN Admiralty</td>
<td>0.0</td>
</tr>
<tr>
<td>STN Woodlands</td>
<td>0.0</td>
</tr>
<tr>
<td>STN Marsiling</td>
<td>0.0</td>
</tr>
<tr>
<td>STN Kranji</td>
<td>0.0</td>
</tr>
<tr>
<td>STN Yew Tee</td>
<td>0.0</td>
</tr>
<tr>
<td>STN Choa Chu Kang</td>
<td>0.0</td>
</tr>
<tr>
<td>STN Bukit Gombak</td>
<td>0.0</td>
</tr>
<tr>
<td>STN Bukit Batok</td>
<td>0.0</td>
</tr>
<tr>
<td>STN Jurong East</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Data: Public transport usage data for one day in 2010,
Challenges for the Singapore implementation

• Further data enrichment, e.g.
 • Population distribution
 • School catchment areas
 • Fuller description of the destinations
 • Full day - diary
 • Freight traffic

• New capabilities, e.g.
 • Mode and destination choice under ERP
 • Longer term demographics of families (and firm)
 • Residential choice
 • Optimal pricing (ERP, public transport, parking)
Challenges for MATSim

- Content:
 - Integration of social networks
 - Their location
 - Their interaction
 - Supply side responses beyond pricing
 - Fully stage-based implementation

- Computation
 - Reduction of computation times
 - Parallel multi-modal flow simulation
 - Non-equilibrium updating
Dr. Michael Balmer
Dr. David Charypar
Dr. Nurhan Cetin
Artem Chakirov
Yu Chen
Francesco Ciari
Christoph Dobler
Dr. Alexander Erath
Dr. Matthias Feil
Dr. Gunnar Flötteröd
Pieter Fourie
Dr. Christian Gloor
Dominik Grether
Dr. Jeremy K. Hackney
Andreas Horni
Johannes Illenberger
Gregor Lämmel
Nicolas Lefebvre
Konrad Meister
Manuel Moyo
Kirill Müller
Andreas Neumann
Thomas Nicolai
Benjamin Kickhöfer
Sergio Ordonez
Dr. Bryan Raney
Dr. Marcel Rieser
Dr. Nadine Schüssler
Dr. David Strippgen
Michael Van Eggermond
Rashid Waraich
Michael Zilske