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D Preprocess a graph G with n nodes and m edges ...

D ... to create a Data Structure, using which ...

D ... we can efficiently answer Distance Queries.

D d(u, v)
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D Preprocess a graph G with n nodes and m edges ...

D ... to create a Data Structure, using which ...

D ... we can efficiently answer Approximate Distance Queries.

D d̃(u, v)



Approximate Distance Oracles — StretchApproximate Distance Oracles — StretchApproximate Distance Oracles — StretchApproximate Distance Oracles — StretchApproximate Distance Oracles — StretchApproximate Distance Oracles — Stretch

D Distance between u and v in graph G : dG (u, v)

D Oracle Result d̃(u, v) satisfies

dG (u, v) 6 d̃(u, v) 6 α · dG (u, v).

D Multiplicative Stretch α
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Shortest-Path Queries in Transportation NetworksShortest-Path Queries in Transportation NetworksShortest-Path Queries in Transportation NetworksShortest-Path Queries in Transportation NetworksShortest-Path Queries in Transportation NetworksShortest-Path Queries in Transportation Networks

D Main focus, large body of research since 60’s/70’s

D Big progress around 2006 (DIMACS Implementation
Challenge)

D Preprocessing: tens of minutes for road map of the US/EU
D Query time: ≈ 106 times faster than Dijkstra’s algorithm

D Ideas

D Geometry, coordinates, A* search [SV86]
D Goal-directed search (A* for graphs) [GH05]
D Hierarchical structures [SS05, BFSS07, BD08, BDS+08]

D Heuristics that work very well for road networks (separators)

D Visit only edges of shortest path
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Related WorkRelated WorkRelated WorkRelated WorkRelated WorkRelated Work

Practical

D Focus on Transportation Networks

Theoretical

D General, undirected graphs

D Restricted graph classes (planar, bounded tree-width,
minor-closed,...)
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Planar Separators, Graph G = (V ,E )Planar Separators, Graph G = (V ,E )Planar Separators, Graph G = (V ,E )Planar Separators, Graph G = (V ,E )Planar Separators, Graph G = (V ,E )Planar Separators, Graph G = (V ,E )

Partition V into V1,V2, S
such that |V1| , |V2| 6 n

2 , no edge between V1,V2, and

D Lipton and Tarjan [LT80], Miller [Mil86]

D s.t. |S | = O(
√

n)
D Shortest paths may cross S up to O(

√
n) times

D Thorup [Tho04]

D s.t. S consists of 3 shortest paths
D can be extended to minor-closed families [AG06]

D Dieng and Gavoille [DG09]

D s.t. S consists of O(1) shortest paths of length “tree-length”



r–divisions [Fre87]r–divisions [Fre87]r–divisions [Fre87]r–divisions [Fre87]r–divisions [Fre87]r–divisions [Fre87]

separate recursively (e.g. using [Mil86]) into

D O(n/r) regions

D region size O(r)

D region boundary O(
√

r)  total boundary O(n/
√

r)
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(1 + ε)–Approximate Shortest-Path Queries; Planar G(1 + ε)–Approximate Shortest-Path Queries; Planar G(1 + ε)–Approximate Shortest-Path Queries; Planar G(1 + ε)–Approximate Shortest-Path Queries; Planar G(1 + ε)–Approximate Shortest-Path Queries; Planar G(1 + ε)–Approximate Shortest-Path Queries; Planar G

Preprocessing Space Query Reference

O(nε−2 lg4 n) O(n · ε−1 lg2 n) O(ε−1 + lg lg n) [Tho04, Thm.3.16]

O(nε−1 lg3 n) O(n · ε−1 lg2 n) O(ε−1 + lg n lg lg n) [Tho04, Prop.3.14]

O(n(ε−1 + lg n) lg2 n) O(n · ε−1 lg2 n) O(ε−1 + lg n lg lg n) [Kle05, Sec.7]

O(nε−2 lg4 n) O(n) O(ε−2 lg3 n) NEW

O(nε−2 lg3 n) O(n · ε−1 lg n) O(ε−1) [Tho04, Thm.3.19]

O(nε−1 lg2 n) O(n · ε−1 lg n) O(ε−1 lg n) [Tho04, Implicit]

O(n lg2 n) O(n) O(ε−2 lg2 n) NEW

Assumption for this table: largest integer weight N = O(poly(n))
(complexity of oracles for planar digraphs depends on N)
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Main Techniques of Thorup’s Distance OracleMain Techniques of Thorup’s Distance OracleMain Techniques of Thorup’s Distance OracleMain Techniques of Thorup’s Distance OracleMain Techniques of Thorup’s Distance OracleMain Techniques of Thorup’s Distance Oracle

D Partition V into V1,V2, S such that |V1| , |V2| 6 n
2 and

D s.t. S consists of 3 shortest paths Q
D  shortest paths cannot cross many times

D Representation of paths that intersect Q





shortest path Q



shortest path Q



shortest path Q

O(1/ε) connections q

s.t. d(v , q) + d(q, q′) ≤ (1 + ε) d(v , q′)





Space Consumption of Thorup’s Distance OracleSpace Consumption of Thorup’s Distance OracleSpace Consumption of Thorup’s Distance OracleSpace Consumption of Thorup’s Distance OracleSpace Consumption of Thorup’s Distance OracleSpace Consumption of Thorup’s Distance Oracle

D Recursive partition using 3 shortest paths Q per level

D O(log n) shortest-path separators per node

D Representation of paths that intersect Q

D store O(1/ε) connections

D Total storage: O(ε−1 log n) connections per node



Linear-Space Distance Oracle: Main IdeaLinear-Space Distance Oracle: Main IdeaLinear-Space Distance Oracle: Main IdeaLinear-Space Distance Oracle: Main IdeaLinear-Space Distance Oracle: Main IdeaLinear-Space Distance Oracle: Main Idea

D store connections for few nodes (landmarks)
 boundary of r–division!

D at query time, search landmark then use [Tho04]
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separate recursively (e.g. using [Mil86]) into
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r–divisions [Fre87]r–divisions [Fre87]r–divisions [Fre87]r–divisions [Fre87]r–divisions [Fre87]r–divisions [Fre87]

separate recursively (e.g. using [Mil86]) into

D O(n/r) regions

D region size O(r)

D region boundary O(
√

r)  total boundary O(n/
√

r)

Idea: store connections among boundary nodes

D space O(n2/r)

D query time O(r) (explore region, compute min boundary pair)



Space vs. Query Time for Exact Shortest PathsSpace vs. Query Time for Exact Shortest PathsSpace vs. Query Time for Exact Shortest PathsSpace vs. Query Time for Exact Shortest PathsSpace vs. Query Time for Exact Shortest PathsSpace vs. Query Time for Exact Shortest Paths

4/3 23/2

1/4
1/3

1/2

1

lg S/ lg n

lg Q/ lg n

[Dji96]

[ACC+96]
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[CX00, Cab06]
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Klein’s MSSP data structure [Kle05]Klein’s MSSP data structure [Kle05]Klein’s MSSP data structure [Kle05]Klein’s MSSP data structure [Kle05]Klein’s MSSP data structure [Kle05]Klein’s MSSP data structure [Kle05]

preprocess G , f

O(n lg n) time & space



Klein’s MSSP data structure [Kle05]Klein’s MSSP data structure [Kle05]Klein’s MSSP data structure [Kle05]Klein’s MSSP data structure [Kle05]Klein’s MSSP data structure [Kle05]Klein’s MSSP data structure [Kle05]

q

query d(q, v)

O(lg n) time
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New Cycle-MSSP data structureNew Cycle-MSSP data structureNew Cycle-MSSP data structureNew Cycle-MSSP data structureNew Cycle-MSSP data structureNew Cycle-MSSP data structure

preprocess G ,C

Õ(n) time
O(n lg lg n) space

|C | = O(
√

n)



New BatchedBatchedBatchedBatchedBatchedBatched Cycle-MSSP data structureNew BatchedBatchedBatchedBatchedBatchedBatched Cycle-MSSP data structureNew BatchedBatchedBatchedBatchedBatchedBatched Cycle-MSSP data structureNew BatchedBatchedBatchedBatchedBatchedBatched Cycle-MSSP data structureNew BatchedBatchedBatchedBatchedBatchedBatched Cycle-MSSP data structureNew BatchedBatchedBatchedBatchedBatchedBatched Cycle-MSSP data structure

query d(C , v)

Õ(|C |) time
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An Experimental Result...An Experimental Result...An Experimental Result...An Experimental Result...An Experimental Result...An Experimental Result...

Hilger et al. [HKMS09, Section 6]

In all cases, the search space of our arc-flag method is
never larger than ten times the actual number of nodes
on the shortest paths.



... and the Corresponding Theoretical Result... and the Corresponding Theoretical Result... and the Corresponding Theoretical Result... and the Corresponding Theoretical Result... and the Corresponding Theoretical Result... and the Corresponding Theoretical Result

Can prove that

In all cases, the search space of our method is never
larger than ten O(lg2 `) times the actual number of
nodes on length ` of the shortest paths.



Query Time Proportional to Path Length: Brief SketchQuery Time Proportional to Path Length: Brief SketchQuery Time Proportional to Path Length: Brief SketchQuery Time Proportional to Path Length: Brief SketchQuery Time Proportional to Path Length: Brief SketchQuery Time Proportional to Path Length: Brief Sketch

increasing neighborhoods

find cycle sep. C

|C | = O(tw)
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Contributions and OutlookContributions and OutlookContributions and OutlookContributions and OutlookContributions and OutlookContributions and Outlook

D Query Time (quasi-) proportional to Shortest-Path Length
(almost matches experimental results)

D Application determines how much space S ≥ m,
our tradeoffs tell how to use it for fast query time Q
both for approximate and exact

D Main open question: optimal use?
Exact S · Q ≥ n

√
n ?

(1 + ε)–Approximate S · Q ≥ n lg n ?
O(1)–Approximate S · Q ≥ n lg lg n ?
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