Vitins, B.J. and K.W. Axhausen (2011) An Integrated and Adaptive Ant Colony and Genetic Algorithm for Transport Network Design, OR 2001 Zurich, Zurich, October 2011.

An Integrated and Adaptive Ant Colony and Genetic Algorithm for Transport Network Design

BJ Vitins KW Axhausen

IVT ETH Zürich

October 2011

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Background

- 1. Order
- Volume delay function
- Wardrop Equilibrium
- 2. Order
- Determination of a subset of candidate links and nodes
- Determination of network element types

Costs:

f = (Generalized Costs, External Costs, ..., Infrastructure Budget)

Accessibility:

$$f = \sum_{o=1}^{O} I_o \cdot \ln\left(\sum_{d=1}^{D} A_d \cdot \exp(-\beta \cdot t_{od})\right) - Infrastructure Budget$$

Potential solutions: 100 nodes -> 10¹⁰³ 400 nodes -> 10⁴⁴⁶ 625 nodes -> 10⁷⁰⁸

Design – Genetic Algorithm vs. Ant Colony Optimization

reproduction

Design - Integrated Ant Colony Genetic Algorithm

Design – recombination procedure

Design – path picking and pheromones update

$$p_{ij}^{g} = \begin{cases} \frac{e^{\alpha \tau_{ij}^{g}} e^{\beta r}}{\sum_{l_{ij} \in L_{Parents}} e^{\alpha \tau_{ij}^{g}} e^{\beta r}}, & \text{when } l_{ij} \in L_{Parents} \\ 0, & \text{otherwise} \end{cases}$$

$$\tau_{ij}^{g} = (1 - \delta) \cdot \tau_{ij}^{g-1} + \max\left(\Delta \tau_{ij}^{g}\right)$$

 τ_{ij}^{g} : Pheromone density in iteration g on link i - j.

 δ : Evaporation rate.

 $\max(\Delta \tau_{ij}^{g})$: Score of the best individual out of all processed network individual.

Results – pheromone development (generation 100)

Results – capacities (generation 100)

Network size [nodes]	Objective functions evaluated [numbers]			Total calculation time [h]		
	GA	IACGA	Difference	GA	IACGA	Difference
100	200'000	54'000	-73.00%	6	0.75	-88.5%
225	1.7·10 ⁸	140'000	-99.92%	5'100	2	-99.96%
400	~1.1·10 ⁹	700'000	-99.94%	33'000	124	-99.62%

Best possible score	Share of optimal networks	Standard deviation	Standard error					
Without degraded initial population								
-2'432	51%	0.67%	3.37					
With degraded initial population								
-2'432	55%	0.79%	3.90					

Application – abstract shape grammars

Application – possible shape grammars

Source: after Marshall (2005)

	In	itial setting 1	Initial setting $2 (n = 3)$		
Shape grammar	Average score	Relative difference	Wilcoxon rank-sum	Average score	Relative difference
A	-143'200	-		-300'192	-
В	-147'132	2.75%	0.0087% (n=20)	-317'145	5.65%
С	-116'550	-		-250'895	-
D	-129'297	10.94%	0.15% (n=10)	-303'507	20.97%

Faster and more precise...

Implement other network elements and land use parameters

Include land use and variable demand

Visualization

Google Earth (2010) http://earth.google.com/, September 2010.
Marshall, S. (2005) Streets & Patterns, Spon Press, London.
Procedural (2010) www.procedural.com, September 2010.
Vitins,B.J. and K.W. Axhausen (2010) Patterns and Grammars for Transport Network Generation, paper presented at the 10th Swiss Transport Research Conference, Ascona, September 2010.