Target DrivenActivity Planning

F Märki D Charypar KW Axhausen TRB 2012 (12-1611)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Research Question

How can we continuously generate and schedule activities under the constraints of behavioral realism and algorithmic efficiency?

Research Question

How can we continuously generate and schedule activities under the constraints of behavioral realism and algorithmic efficiency?

- Agents make decisions on the fly with an open time horizon (multiday)
- Use parameters that are close to observed behavior
- Use a decision heuristic (greedy as-we-go approach) and go parallel

- Components of our model
 - Targets
 - Projects
 - Effectiveness
- Decision heuristic
- Q&A

Convolution with an exponential kernel

A exponentially weighted moving average

Possible values:

- Average time spend for an activity
- Average execution frequency of an activity

A person would like to play $2^{+0.5}_{-1}$ hours of tennis about 2^{+1}_{-1} times per week.

A person would like to play $2^{+0.5}_{-1}$ hours of tennis about 2^{+1}_{-1} times per week.

Project vacation

"play tennis" behavior of a person (influenced by project "vacation")

- (1) is on vacation
- (2) after vacation (work off what has been put aside)
- (3) back to normal course of life

 Projects temporally modify reference values of targets

Heuristic (Discomfort)

Discomfort Measure

 Defines urgency an agent experiences to change its current situation

Heuristic (Discomfort)

Discomfort Measure

 Defines urgency an agent experiences to change its current situation

$$D(t) = \sum_{k=1}^{n} (f_{refVal}^{k}(t) - f_{monVal}^{k}(t))^{2} \cdot \begin{cases} w_{1}^{k} \\ w_{2}^{k} \end{cases}$$

if $f_{monVal}(t)_k \leq f_{refVal}(t)_k$ otherwise

$$w_1^k = \frac{1}{(f_{refVal}^k(t) - f_{lower-bandwidth}^k(t))^2}$$

$$w_2^k = \frac{1}{(f_{refVal}^k(t) - f_{upper-bandwidth}^k(t))^2}$$

Effectiveness of an activity execution at a specific time

- Shop opening hours for a shopping activity
- Daylight intensity for a sleep activity
- Business hours for a work activity

example of shop opening hours

Heuristic (Look-Ahead)

Look-Ahead Measure

Indication about future opportunities

look-ahead measure through convolution with an exponential kernel

Heuristic (Look-Ahead)

Look-Ahead Measure

Indication about future opportunities

$$LA(t) = \begin{cases} 1 + w_1 \cdot (1 - \int_0^h (f_{effect}(t+x) \cdot kernel(x)) \, dx) & \text{if } f_{effect}(t) > u \\ 1 & \text{otherwise} \end{cases}$$

Decision Heuristic

- considers activities which can be executed (or are executed based on cultural/social norms)
- considers activities which give more discomfort reduction per spent time
- simplistic location choice procedure
- → favors activities which have fewer execution options in the future

Conclusion & Outlook

- Agents behave as expected artificial examples
- Rework code (performance / parallel framework)

- More simulation runs for validation using a 6 week travel diary (similar to Mobidrive)
- Location choice

