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Introduction

> joint trip: several individuals traveling in the same private
vehicle
> joint traveling behaviour is an important behaviour

» occurs frequently in households
» some policies aim at encouraging such a behaviour

> HOV lanes
> car-pooling services

» currently, few means of predicting such a behaviour exist
» traffic simulation is an important tool for policy evaluation

» micro-simulation, by simulating individuals explicitly, allows to
simulate a wide range of behaviours
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The MATSim software

v

MATSim: Multi-Agent Transport Simulation

» open source software (GNU GPL)

written in Java

Mainly developped at ETHZ, TU Berlin, Senozon

v

v
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The MATSim process in a nutshell

» state of traffic in an average day: (stochastic) user equilibrium

» a strategy (daily plan) can be modified by changing
dimensions easy to change in the short-term (day-to-day)

» dimensions corresponding to long-term changes (eg. home
and work places) are exogenously determined (boundary
conditions)

> search process: “co-evolutionary” algorithm

» works with a population of heterogeneous agents
» each agents i tries to solve maxyep, U(pilp—i)
> influence of p_;: via congestion
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The MATSim process steps

initial
demand

traffic

simulation

scoring

replanning

» replanning:

» creation of new plan

» selection of a past plan based on experienced score

» random mutation

analysis

> optimisation given the travel times in the previous iteration

> probabilistic (RUM)

> deterministic (best past plan)
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MATSim and joint trips (1): MATSim

» remember the agent's problem?
> maxpep, U(pilp-i)
> |p_; estimated via “mobility simulation”
» |p_; actually differs between iterations
» remember MATSim's process?
» agents actually “knows" U(p;|p—;) = U(pi)
> |p_;: effect of experienced congestion in the last execution
(iteration /): “empirical” knowledge
> this is usually valid enough:
» changing plans of few agents only has a minor influence on

the state of traffic
> actually reproduces human learning
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MATSim and joint trips (2): joint trips

» what about joint travel?

p—i = {pi}tjes; U {px}rgs with S; the set of co-travelers
» S, typically very small
each {p;}jes, has a lot of influence
> participation in joint travel
> departure time for the joint trip
> ‘utility transfers” (altruistic behaviour, monetary
compensation)

v

v

v

individuals typically aware of (relevant part of) {p;}jcs,
(agreement): “theoretical” knowledge

> necessary to find a way to actually correlate plan selection
based on U(pil{p;}jes;)
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MATSim and joint trips (2+1): joint trips in MATSim

To solve those problems, the equilibrium is defined over groups of
agents:
> new “aggregated” data structures are defined
» Person — Clique

> groups Persons which (can) travel together (i € C = S; C C)
> maintains a set of JointPlans

» Plan — JointPlan

> groups individual plans, always selected together
> is affected a score (currently, the sum of the scores of
individual plans: full utility transfers)

» replanning modules work at the aggregated level (competing
cliques)

> joint trip: access leg — pick-up — shared leg — drop-off —
egress leg

» mobility simulation works with individuals
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Remarks on joint trip generation

» most of the joint-trip generation approaches in the literature
are specific to households

> in the context of MATSim, three approaches are possible:

» generation a priori (exogeneous)
> allows to adapt to different contexts (household, car-pool...)
> joint trips not part of the equilibrium

» generation during the iterations (endogeneous)
> joint trips truly part of the equilibrium
> increases the search space size

> “hybrid”
> a limited set of possible joint trips is identified beforehand
> joint trips from this set can be selected/unselected during the

optimisation
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the replanning step in more details

At each iteration, for each clique, one of the following strategies is
executed:
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The Scenario

A scenario for the urban area of Zirich:

» 10% sample
» car-pooling matings computed by a partner
» maximum detour time with time windows

» “default” (i.e. uncalibrated) utility parameters
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Influence of constraints

> two major constraints implied by a joint trip:
> synchronisation
» mode chaining

» what influence do they have on the outcome?
> 3 runs:

> no synchronisation, no mode chaining constraints
» no synchronisation, mode chaining constraints
» synchronisation, mode chaining constraints
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Influence of constraints: synchronisation
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Influence of constraints: synchronisation
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Influence of constraints: mode chaining
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Influence of constraints: mode chaining
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Influence of constraints: scores
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Score improvements
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Score improvements
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What can we get from those results?

» major influence of mode chaining constraints on the
attractiveness of joint trips
> need to consider other dimensions than travel time in
attractiveness of joint trips vs other modes
» monetary costs (fuel, tolls. ..)
» car availability (household)
» willingness to share time with social contacts
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Next steps

> joint trip generation/selection
> initial demand model
» replanning-level (for small cliques, eg. households, or
social-network-based)
» include monetary cost in utility function
» relaxation of the “utility transfers” hypothesis
» actually use U(pj|{p;j}jes;) to correlate plan choice

> deterministic: iterative removal of dominated strategies

> stochastic: joint choice probability
> main issue: estimate efficiently conditional utility for all
possible combinations
» finer modeling of social contacts and willingness to help
> allows more complex networks than isolated cliques

» extend the Clique concept to represent households
> car availability
> joint activities

» validation against aggregate data
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Thank you for your attention

Any question?
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