Human behaviour in large scale evacuation events

J. Koot M. Kowald K.W. Axhausen

IVT ETH Zürich

May 2012

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Definition: Large scale evacuation

- Areas of at least 3 km in diameter
- E.g. cities, towns, districts, villages, not single objects or households

IVT simulates evacuation events in MATSim

Behavioural model in MATSim is Homo Economicus

Motivation (2)

Homo Economicus

→ Collect information on human behaviour in evacuations and estimate more realistic behavioural model

1. Literature research

2. Expert interviews

3. Survey study

Expert interviews: Results

Hypotheses: Participation for an evacuation	Influence
increases for 'life-threatening' evacuation reasons	+++
decreases for natural disasters	++
decreases if time span is too large or to narrow	+
decreases with available information from reliable sources	++
increases if people have to care for others	+++
increases for people without emotional relations	++
increases when family is united	+++
decreases for old people and young adults	+++
decreases for people from 'isolated' sub-groups	+++
decreases for people with high value private property	+++
decreases for males	+
is likely for most people	+++
is often done in own car	+++
is done in a pro-social way of behaviour	+
includes that most people find private accommodations	++
depends on an interaction between reason and information	++

Survey study: Stated choice experiment

Attributes	Flood	Chemical accident	Nuclear accident	Fire, toxic gasses
Source of initial warning		1. Siren		
		2. Mass r	nedia (Radio & TV)	
		3. Social	contacts	
Source of warning confirmation		1. Rescu	e teams (Police & fire	fighters)
		2. Mass r	nedia (Radio & TV)	
		3. Social	contacts	
Status of household community		1. United		
		2. Divideo	b	
Time for evacuation	1. Immediately	1. Immediately	1. Immediately	1. Immediately
	2. 8 hours	2.8 hours	2.8 hours	
	3. 16 hours		3. 16 hours	
Distance to evacuation source	1. 2 kilometers	1. 2 kilometers	1. 2 kilometers	1. 2 kilometers
	2. 5 kilometers	2. 5 kilometers	2. 5 kilometers	2. 5 kilometers
			3. 10 kilomters	
Distance to evacuation border	1. 2 kilometers	1. 2 kilometers	1. 2 kilometers	1. 2 kilometers
	2. 5 kilometers	2. 5 kilometers	2. 5 kilometers	2. 5 kilometers
			3. 10 kilomters	
Choice	1. Immediate	evacuation; 2. Lat	er evacuation; 3. N	lo evacuation

BIOGEME

$$V_{imm} = ASC_{imm}$$

$$+ \beta_{atom}^{1} * d_{atom} + \beta_{chemie}^{1} * d_{chemie} + \beta_{fire}^{1} * d_{fire}$$

$$+ \beta_{age30}^{1} * d_{age30} + \beta_{age60}^{1} * d_{age60}$$

$$+ \beta_{time8}^{1} * (1 + \beta_{hhunit1}^{1} * d_{hhunit}) * d_{time8} + \beta_{time16}^{1} * (1 + \beta_{hhunit2}^{1} * d_{hhunit}) * d_{time16}$$

Rho ² = 0.365 N = 7232	Alternative: EvacuateAlternative: Evacuateimmediatelylater			acuate	
Coefficient	value	t-value		value	t-value
Constant	2.9	93	14.55	2.19	9.40
Chemical accident	1.4	40	3.33	0.89	2.14
Nuclear accident	(1.5	72	8.70	0.60	3.11
Fire, toxic gases	0.9	54	1.57	0.29	0.80
Age 31 - 60	-0.3	36	-3.63	-0.00	-0.00
Age > 60	-0.0	60	-3.88	-0.00	-0.00
Time 8 hours	(-1.4	14	-5.87	0.55	2.26
Household united	-0.4	43	-2.32	-0.62	-1.24
Time 16 hours	-1.7	71	-6.97	0.39	1.63
Household united	-0.4	48	-3.34	0.12	0.16

Survey study: MNL-Model of stated choices

Effect of spatial segregation of household members

time span for evacuation

Factor analysis

Variable	Factor 1 (care takers)		Factor 2 (assistance needy)
Children		0.67	
Partner		0.52	
DriverLic		0.18	-0,48
PublicTransport		-0.18	0.27
Student			0.15
Age > 60		-0.27	
Income_High		0.24	-0.12

Indicators: households with children & driver license

Class "care takers" : household members: joined/ separated

Class "assistance needy" : influence of age

rho²: 0,391 (compared to basic model of 0,365)

Evacuate immediately Evacuate later

Coefficient	value		value
Constant		1,91	1,17
Chemical accident		0,36	0,18
Nuclear accident		0,21	0,09
Fire, toxic gases		0,05	0,01
Age 31 - 60		-2,76	-1,90
Age > 60		-2,89	-2,13
Time 8 hours		-0,22	-0,09
Household united		-0,30	-2,33
Time 16 hours		-0,28	-0,12*
Household united		-0,15	-1,81*

* = not significant

1. Addresses at 12 am, 9 am, 5 pm \rightarrow geo coordinates

2. Car-sharing model

- Behaviour of people can be included in MATSim
- Cause of accident, age, time span available and household status have impact on evacuation decision
- Account for latent classes

But...

Evacuation is an exceptional event.

More latent classes?

- Comparison with other models
- Sensitivity analysis of relevant parameters in MATSim
- Re-run evacuation scenarios with estimated parameters
- Compare simulation results

Thank you for your attention!

Thank you for your attention!

Back-up slides

Representativeness

	Attribute	Survey data	Microcensus Switzerland
Sex [%]	Male	50.3	49.7
	Female	49.0	51.3
Civil status [%]	Single	25.3	29.9
	Married	58.1	54.5
	Divorced	11.0	7.60
	Widowed	3.6	6.6
	Living separated	2.0	1.4
Age [% of people in class	0-20	0.7 19.3	0.05 19.0
Ø age within the class]	21-40	29.7 31.7	28.9 31.4
	41-60	43.7 50.4	31.0 50.0
	61-80	25.8 67.7	18.5 69.4
	81+	0.1 84	2.8 84.6
Household income	<8000	57.9	73.0
	8001 - 12000	28.2	19.1
	>12.000	13.9	7.9
Citizenship	Swiss	91.9	80.0
	German	2.6	2.3
	French	0.4	1.3
	Italian	1.2	4.6
	Other	4.0	11.8
Drivers license	Available	91.8	80.7
	Not available	8.2	19.3