Axhausen, K.W. (2011) Wie weiter mit Verkehrsmodellen ?, Vortrag, Universität Stuttgart, Juli 2012.

Wie weiter mit Verkehrsmodellen?

KW Axhausen

IVT ETH Zürich

Juli 2012

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Integration of land use (optimisation)

(1) The journey times on all the routes actually used are equal, and

less than those which would be experienced by a single vehicle on any unused route.

(2) The average journey time is a minimum.

Key points of the critique of equilibrium approaches

- Travel is derived demand, with some exceptions
- The travellers are constrained by their commitments and mobility tool ownership
- Travellers aren't in equilibrium
- Travellers don't know all alternatives
- Travellers don't plan their whole day (week) in advance

Processes suggested for personal daily dynamics

Thinking about SUE and best response

Learning approach of the generic one-day transport model

Equilibrium search in "ABM" & assignment combinations

Daganzo and Sheffi's (1977) define it for the aggregate case:

"In a SUE network, no user believes he can improve his travel time by unilaterally changing routes." In SUE for flows q'_{rij}

$$q'_{rij} = q'_{ij} * P(r)$$
 , for all r, i and j

$$P(r) = f(k'_{rij}(q_{rij}))$$

with a suitable

f()	Choice model
k()	definition of the generalised costs k' _{rij}

Flötteröd and Nagel (2009) define it:

"An agent-based SUE [...] is defined as a system state where agents draw from a stationary choice distribution such that the resulting distribution of traffic conditions re-generates that choice distribution. [...] It implies that every agent considers a whole choice of (possibly suboptimal) plans and selects one of these plans probabilistically." Meister (2011) operationalizes it as:

"...An agent-based SUE is defined as a system state where the number of agents which perceive that they can improve their state is minimized, given a dynamic environment where a constant share of all agents [continues to] change their plans".

MATSim: SUE search example

SUE

Main partners

- TU Berlin (Prof. Nagel)
- ETH Zürich and FCL Singapore
- senezon (Dr. Balmer, Rieser)

Coordination via:

- User meeting
- Developer meeting

Help for new users

- Tutorials
- www.matsim.org

Number and type of activities Sequence of activities

- Start and duration of activity
- Composition of the group undertaking the activity
- Expenditure division
- Location of the activity
 - Movement between sequential locations
 - Location of access and egress from the mean of transport
 - Parking type
 - Vehicle/means of transport
 - Route/service
 - Group travelling together
 - Expenditure division

Current Vickrey-type utility function

$$U_{plan} = \sum_{i=1}^{n} U_{act,i} + \sum_{i=2}^{n} U_{trav,i-1,i}$$

$$U_{act,i} = U_{dur,i} + U_{late.ar,i}$$

MATSim framework:

Network node matching tool

Simulation: MATSim 1.0 demand on MATSim 2.0 network

- Search or add a shortest path to the set of paths considered
- Allocate flows among the set of paths considered
- Check if chosen convergence criterion is met

- Search or add a shortest path given the current generalised cost estimate to the set of paths considered
- Allocate flows among the the set of paths considered
- Check if chosen convergence criterion is met

- Enumerate all possible schedules
- Allocate flows randomly among the set of schedules
- Execute the schedules without within-day replanning
- Check if chosen convergence criterion is met

- Construct all schedules considered relevant
- Allocate flows randomly among the set of schedules
- Execute the schedules without within-day replanning
- Check if chosen convergence criterion is met

Activity scheduling with some **best response** modules

- Number and type of activities
- Sequence of activities
 - Start and duration of activity
 - Composition of the group undertaking the activity
 - Expenditure division
 - Location of the activity
 - Movement between sequential locations
 - Location of access and egress from the mean of transport
 - Parking type and location
 - Vehicle/means of transport
 - Route/service
 - Group travelling together
 - Expenditure division

- For all agents:
 - Find dissatisfied agent
 - Construct a best schedule given the current generalised cost estimate and agent specific tastes to add to the set of schedules already considered.
 - Rescore existing schedules
 - Select best schedule
- Execute schedule with congestion feedback
- Check if convergence criterion is met

Prof. Kay Axhausen Dr. Michael Balmer Dr. David Charypar Dr. Nurhan Cetin **Artem Chakirov** Yu Chen Francesco Ciari **Christoph Dobler Thibaut Dubernet** Dr. Alexander Erath Dr. Matthias Feil Dr. Gunnar Flötteröd **Pieter Fourie** Dr. Christian Gloor **Dominik Grether** Dr. Jeremy K. Hackney Andreas Horni Johannes Illenberger

Gregor Lämmel Nicolas Lefebvre Prof. Kai Nagel Dr. Konrad Meister Manuel Moyo **Krill Müller Andreas Neumann Thomas Nicolai Bnjamin Kickhöfer Sergio Ordonez Dr. Bryan Raney Dr. Marcel Rieser** Dr. Nadine Schüssler Lijun Sun Dr. David Strippgen **Michael Van Eggermond Rashid Waraich Michael Zilske**

• www.matsim.org

• www.ivt.ethz.ch