Axhausen, K.W. and M. Rieser (2012) MATSim: Background and current progress, presentation, 13th IATBR workshop "Simulation Frameworks for Integrated Modelling", Toronto, July 2012.

MATSim: Background and current progress

KW Axhausen M Rieser

July 2012

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

SENCIZON understanding mobility Wardrop (1952):

- The journey times on all the routes actually used are equal, and less than those which would be experienced by a single vehicle on any unused route.
- 2. The average journey time is **a** minimum.

Daganzo and Sheffi's (1977) define SUE for the aggregate case:

"In a SUE network, no user believes he can improve his travel time by unilaterally changing routes."

Packing problem of the DUE, SO & SUE

Given the

Agent's daily schedules of predetermined detail

Subject to some

Max F

upto the resolution of the agents, links and facilities

Matching the

Expected elasticities with respect to the generalized costs Known correlations between the details of the plans Capacity constraints on the link and facilities Minimum loads for some of the facilities Number and type of activities Sequence of activities (Feil, 2010)

- Start and duration of activity
- Composition of the group undertaking the activity (Kowald)
- Expenditure division
- Location of the activity

(Horni)

- Movement between sequential locations
 - Location of access and egress from the mean of transport
 - Parking search and type
 - Vehicle/means of transport
 - Route/service
 - Group travelling together
 - Expenditure division

(Dubernet)

(Waraich)

(Ciari)

Approach	Schedules	k	Equilibrium
ABM	NL	Link CR	Flow SUE
CEMDAP	RUMs	Link CR	Flow SUE
Albatross	Rule based informed RUMs	Link CR	Flow SUE
"Eindhoven"	Supernetworks	(Link CR)	(Flow SUE)
MATSim	Conditional probabilites/RUMs	Flow simulation (links & facilities)	Schedule SUE

Equilibrium search in MATSim (Discrete "MSA" of plans)

Network: 113 000 links Population: 4,5 million agents Public Transport: 530 lines, 96 transit vehicle types

Mode choice, Departure time choice, Route choice (car + transit)

Current progress: Switzerland

Network: ~ 1 million links (navigation network) Population: 8 million Complete public transport (all trains, buses, trams, cablecars, ...) Mode choice, Departure time choice, Route choice (car + transit)

Current progress: Switzerland (cont'd)

Using the model also for site assessment and pedestrian counts

Current progress: Los Angeles

Network: 108 000 links Population: 10+ million agents Public transport: Estimated travel times only Mode choice, Departure time choice, Route choice

Current progress: Singapore

Network: 80 000 links

Population: 5 million

Complete public transport (bus, MRT)

Mode choice, Departure time choice, Route choice (car + transit)

Current progress: Singapore

Location	Scale (agent	Schedules s)	DTA	Equi- librium
Switzerland Berlin München Singapore Gauteng Cape Town (Seoul) (Shanghai)	10 ⁶ 10 ⁶ 10 ⁶ 10 ⁶ 10 ⁶ 10 ⁷ 10 ⁷	MATSim MATSim MATSim MATSim MATSim MATSim MATSim	MATSim MATSim MATSim MATSim MATSim MATSim MATSim	Yes Yes Yes Yes Yes Yes Yes
Tel Aviv Toronto Los Angeles Netherlands (London)	10 ⁶ 10 ⁷ 10 ⁷ 10 ⁷ 10 ⁷	ABM Tasha CEMDAP Albatross ABM	MATSim MATSim MATSim MATSim MATSim	- - - -

Prof. Kay Axhausen Dr. Michael Balmer Dr. David Charypar Dr. Nurhan Cetin **Artem Chakirov** Yu Chen Francesco Ciari **Christoph Dobler** Thibaut Dubernet Dr. Alexander Erath Dr. Matthias Feil Dr. Gunnar Flötteröd **Pieter Fourie**

Dr. Christian Gloor **Dominik** Grether Dr. Jeremy K. Hackney Andreas Horni Johannes Illenberger Dr. Gregor Lämmel Nicolas Lefebyre Prof. Kai Nagel Dr. Konrad Meister Manuel Moyo **Kirill Müller** Andreas Neumann **Thomas Nicolai**

Benjamin Kickhöfer Sergio Ordonez Dr. Bryan Raney Dr. Marcel Rieser Dr. Nadine Rieser Lijun Sun Dr. David Strippgen Michael Van Eggermond Rashid Waraich Michael Zilske

www.matsim.org

www.ivt.ethz.ch www.futurecities.ethz.ch

www.senozon.ch