Including joint trips in a Multi-Agent transport simulation

Thibaut Dubernet

Institute for Transport Planning and Systems (IVT)
ETH Zurich
Introduction

Inclusion of joint trips in MATSim

Results

Next steps
Introduction

- joint trip: several individuals traveling in the same private vehicle
- joint traveling: important behaviour
 - occurs frequently in households
 - some policies aim at encouraging such a behaviour
 - HOV lanes
 - car-pooling services
- currently, few means of predicting such a behaviour exist
- traffic simulation is an important tool for policy evaluation
- micro-simulation, by simulating individuals explicitly, allows to simulate a wide range of behaviours
Introduction

Inclusion of joint trips in MATSim

Results

Next steps
The MATSim software

- MATSim: Multi-Agent Transport Simulation
- open source software (GNU GPL)
- written in Java
- Mainly developed at ETHZ, TU Berlin, Senozon
The MATSim process in a nutshell

- state of traffic in an average day: (stochastic) user equilibrium
- a strategy (daily plan) can be modified by changing dimensions easy to change in the short-term (day-to-day)
- dimensions corresponding to long-term changes (e.g. home and work places) are exogenously determined (boundary conditions)
- search process: “co-evolutionary” algorithm
 - works with a population of heterogeneous agents
 - each agent i tries to solve $\max_{p_i \in P_i} U(p_i|p_{-i})$
 - influence of p_{-i}: via congestion
The MATSim process steps

1. **Initial demand**
2. **Traffic simulation**
3. **Scoring**
4. **Analysis**
5. **Replanning**
 - Creation of new plan
 - Random mutation
 - Optimisation given the travel times in the previous iteration
 - Selection of a past plan based on experienced score
 - Probabilistic (RUM)
 - Deterministic (best past plan)
The MATSim process steps

- **Initial demand**
- **Traffic simulation**
- **Scoring**
- **Analysis**

Replanning:
- Creation of new plan
 - Random mutation
 - Optimisation given the travel times in the previous iteration
- Selection of a past plan based on experienced score
 - Probabilistic (RUM)
 - Deterministic (best past plan)
MATSim and joint trips (1): MATSim

▶ remember the agent’s problem?
 ▶ max_{p_i \in P_i} U(p_i | p_{-i})
 ▶ |p_{-i}| estimated via “mobility simulation”
 ▶ |p_{-i}| actually differs between iterations

▶ remember MATSim’s process?
 ▶ agents actually “knows” U(p_i | p_{-i}) \approx U_I(p_i)
 ▶ |p_{-i}|: effect of experienced congestion in the last execution
 (iteration I): “empirical” knowledge
 ▶ this is usually valid enough:
 ▶ changing plans of few agents only has a minor influence on
 the state of traffic
 ▶ actually reproduces human learning
MATSim and joint trips (2): joint trips

- what about joint travel?
 - $p_{-i} = \{p_j\}_{j \in S_i} \cup \{p_k\}_{k \not\in S_i}$ with S_i the set of co-travelers
 - S_i typically very small
 - each $\{p_j\}_{j \in S_i}$ has a lot of influence
 - participation in joint travel
 - departure time for the joint trip
 - “utility transfers” (altruistic behaviour, monetary compensation)
 - individuals typically aware of (relevant part of) $\{p_j\}_{j \in S_i}$ (agreement): “theoretical” knowledge

- necessary to find a way to actually correlate plan selection based on $U(p_i|\{p_j\}_{j \in S_i})$
MATSim and joint trips (2+1): joint trips in MATSim

To solve those problems, the equilibrium is defined over groups of agents:

- new “aggregated” data structures are defined
 - Person → Clique
 - groups Persons which (can) travel together ($i \in C \Rightarrow S_i \subset C$)
 - maintains a set of JointPlans
 - Plan → JointPlan
 - groups individual plans, always selected together
 - is affected a score (currently, the sum of the scores of individual plans: full utility transfers)

- replanning modules work at the aggregated level (competing cliques)

- joint trip: access leg → pick-up → shared leg → drop-off → egress leg

- mobility simulation works with individuals
Remarks on joint trip generation

- most of the joint-trip generation approaches in the literature are specific to households
- in the context of MATSim, three approaches are possible:
 - generation *a priori* (exogeneous)
 - allows to adapt to different contexts (household, car-pool...)
 - joint trips not part of the equilibrium
 - generation during the iterations (endogeneous)
 - joint trips truly part of the equilibrium
 - increases the search space size
 - “hybrid”
 - a limited set of possible joint trips is identified beforehand
 - joint trips from this set can be selected/unselected during the optimisation
the replanning step in more details

At each iteration, for each clique, one of the following strategies is executed:

- optimisation of activity durations and mode
 - uses Tabu Search
 - estimates travel times based on the events of the previous simulation run
 - mode is optimised at the subtour level
- plans are synchronised by penalising unsynchronized plans
- (joint trips selection)
- re-routing
- best plan selection
 . . .
the replanning step in more details

At each iteration, for each clique, one of the following strategies is executed:

- optimisation of activity durations and mode
 - uses Tabu Search
 - estimates travel times based on the events of the previous simulation run
 - mode is optimised at the subtour level
 - plans are synchronised by penalising unsynchronised plans
the replanning step in more details

At each iteration, for each clique, one of the following strategies is executed:

- optimisation of activity durations and mode
 - uses Tabu Search
 - estimates travel times based on the events of the previous simulation run
 - mode is optimised at the subtour level
 - plans are synchronised by penalising unsynchronised plans

- (joint trips selection)
the replanning step in more details

At each iteration, for each clique, one of the following strategies is executed:

- optimisation of activity durations and mode
 - uses Tabu Search
 - estimates travel times based on the events of the previous simulation run
 - mode is optimised at the subtour level
 - plans are synchronised by penalising unsynchronised plans
- (joint trips selection)
- re-routing
the replanning step in more details

At each iteration, for each clique, one of the following strategies is executed:

- optimisation of activity durations and mode
 - uses Tabu Search
 - estimates travel times based on the events of the previous simulation run
 - mode is optimised at the subtour level
 - plans are synchronised by penalising unsynchronised plans

- (joint trips selection)
- re-routing
- best plan selection
the replanning step in more details

At each iteration, for each clique, one of the following strategies is executed:

▶ optimisation of activity durations and mode
 ▶ uses Tabu Search
 ▶ estimates travel times based on the events of the previous simulation run
 ▶ mode is optimised at the subtour level
 ▶ plans are synchronised by penalising unsynchronised plans
▶ (joint trips selection)
▶ re-routing
▶ best plan selection
▶ ...
Introduction

Inclusion of joint trips in MATSim

Results

Next steps
The Scenario

A scenario for the urban area of Zürich:

- 10% sample
- car-pooling matches computed by a partner
 - maximum detour time with time windows
- “default” (i.e. uncalibrated) utility parameters
Influence of constraints

- two major constraints implied by a joint trip:
 - synchronisation
 - mode chaining
- what influence do they have on the outcome?
- 3 runs:
 - no synchronisation, no mode chaining constraints
 - no synchronisation, mode chaining constraints
 - synchronisation, mode chaining constraints
Influence of constraints: synchronisation

no synchronisation, mode chaining constraints:

![Diagram showing influence of constraints with different scores and activities represented.]

- car
- car_passenger
- drop_off
- home
- leisure
- pt
- pu_28611
- pu_28612
- shop
- work_sector3
Influence of constraints: synchronisation

synchronisation, mode chaining constraints:
Influence of constraints: mode chaining

no synchronisation, no mode chaining constraints:

agent 4447907

score=159.11

agent 268740

score=215.61

- car
- car_passenger
- drop_off
- home
- leisure
- pt
- pu_54739
- shop
- work_sector2
Influence of constraints: mode chaining

no synchronisation, mode chaining constraints:

```
agent 268740
score=159.05
agent 4447907
score=190.76
```
Influence of constraints: scores
Travel time improvements
Score improvements

![Box plot showing score improvements with and without mode constraints.](image)
Score improvements

-4 -2 0 2 4
score improvement

2 3 4 5 6 7 8 9 10
clique size

with mode constraints
no mode constraints
What can we get from those results?

- major influence of mode chaining constraints on the attractiveness of joint trips
- need to consider other dimensions than travel time in attractiveness of joint trips vs other modes
 - monetary costs (fuel, tolls...)
 - car availability (household)
 - willingness to share time with social contacts
Introduction

Inclusion of joint trips in MATSim

Results

Next steps
Next steps

- joint trip generation/selection
 - initial demand model
 - replanning-level (for small cliques, eg. households, or social-network-based)
- include monetary cost in utility function
- relaxation of the “utility transfers” hypothesis
 - actually use $U(p_i | \{p_j\}_{j \in S_i})$ to correlate plan choice
 - deterministic: iterative removal of dominated strategies
 - stochastic: joint choice probability
 - main issue: estimate efficiently conditional utility for all possible combinations
 - finer modeling of social contacts and willingness to help
 - allows more complex networks than isolated cliques
- extend the Clique concept to represent households
 - car availability
 - joint activities
- validation against aggregate data
Thank you for your attention

Any question?