Erath A.L., A. Chakirov, M. van Eggermond, P. Fourie, S. Ordóñez, L. Sun, K.W. Axhausen (2013) Presentation for LTA steering committee, Future Cities Laboratory, May 2013

LTA – FCL Steering committee – Meeting 5

Land Transport Authority Singapore

May 2013

(SEC)	SINGAPORE-ETH CENTRE	新加坡-ETH 研究中心
(FCL)	FUTURE CITIES LABORATORY	未来 城市 实验室

- I. MATSim **Decision Support System**: making MATSim accessible to practice
- II. New bus services and MRT lines: Evaluation with MATSim
- III. Improvements, calibration and **validation** of MATSim
- IV. Detection of urban activities beyond home/work using Cepas data
- V. Outlook

MATSim Decision Support System (MDSS)

Making MATSim accessible to practice

L

Alex Erath, Pieter Fourie, Michael van Eggermond

Advantages

Full temporal dynamics

- Bunching phenomena
- Overcrowding of individual vehicles
- Time-dependent demand management

Agent-based paradigm

- Individuals
- Parcel or building (or unit) as base unit
- Interdependency of trips and activities, e.g. tour based mode choice

Challenges

How to deal with the wealth of data?

- Who?
- With how much time?
- What skills?
- New questions?

Analyising MATSim scenarios: current situation I

Analyising MATSim scenarios: current situation II

<u>□ - @ @ @ @ @ @ @ </u>		E Web
🕒 Project Explorer 🖇 📃 🕒 🖕 👘	MainDistanceClass.ja pom.xml // MainEventAnalyzer.ja // PublicTranportTelepo // TimeSpaceDistributio 🖄 "3	Cutline 🛛 📔 Snippets
Project Dipiter 2: Project Dipiter 2: Pro	<pre>2) Manuformet.usks</pre>	a Outline S interpretation in the second and a second

Writable

374:25

Smart Insert

7

0

Transport planners

- Effects of new bus services/network
- Impact of travel demand management schemes

Urban planners:

- Temporal patterns of buildings and neighbourhood
- Flow between public transport stops to surrounding buildings

Policy-makers

- Costs and benefits of a infrastructure measures?
- Who and where are the winners and losers?

Public transport operators

• Who profitable will a new line be?

Service industry

• Which customers are in catchment areas, separated by mode?

Functional:

Appraisal

- Cost-benefit
- Winners and losers

Scope

- Journeys
- Stages
- Activities

Temporal analysis

• Full temporal resolution for filtering and aggregation

Technical:

Database

- Open source with open interface
- Spatial queries
- Flexible permission setting

Front-end

 Business analytics software for customisable and interactive analysis

• GIS

MDSS for Singapore

Interactive analysis of MATSim demand (based on HITS 2008)

II New bus services and MRT lines

Evaluation with MATSim and MDSS

Ljun Sun, Sergio Ordonez, Pieter Fourie, Artem Chakirov, Alex Erath, Michael van Eggermond

Base scenario

Schedule GTFS 2011

Vehicles information according to <u>www.sgwiki.com</u>

Test scenarios:

- a) Adding later introduced services
 - 1. Bus line 860
 - 2. Circle line Stage 4, 5 and extension to Marina Bay
- b) Amendment of existing bus line 51
 - 1. Split at Blk 79 Ganges Road
 - 2. Short cut at Alexandra Road

Experimental setup

Demand

Cepas data

Transactions recorded on Tuesday, 22nd April 2011 Assumption of uniform arrival rate between two scheduled services Journey starts and ends at reported public transport stops

Boarding, alighting at stop x, bus line y

Accounted demand reactions

- New routes (including transfers)
- Walk to other stops

Not accounted demand reactions

- Mode switch (except for walk)
- Time of day
- Location of start/end stop
- Induced demand

Simulation parameters

Calibration of simulation (I)

Starting values

$$v_{bus,trunk} = 26 \ km/h$$

$$v_{bus,exp} = 50 \ km/h$$

$$\sigma_{bus}(v) = 0.2 \cdot v_{bus}$$

$$v_{train} = 72 \ km/h$$

$$\sigma_{train}(v) = 0$$

Bus stops: sequential operations Rail: access and waiting time **not included** in MATSim

Calibrated values

Dozens of calibration runs

 $v_{bus,trunk} = 22 \frac{km}{h} \pm f(h)$ $v_{bus,exp} = 50 \ km/h \quad v_{bus,art} = 40 \ km/h$ $\sigma_{bus}(v) = 1.1 \cdot \sigma_{bus,Cepas,h}$ $v_{train} = 72 \ km/h$ $\sigma_{train}(v) = 0$

Bus stops: parallel boarding Rail: access and waiting time **included**

Experimental setup: calibration of simulation (II), trip speed over time of day

Public transport

- Value of in-vehicle time: 8 SGD/h
- Value for waiting (start and transfer): 12.89 SGD/h
- Additional penalty for transfer: 0.65 SGD = 5 min in-vehicle time

On foot (access/egress)

- Walking speed: 4km/h
- Value of walking time: 16.92 SGD/h

In future scenarios:

- Value of a seat/crowdedness
- Preference for bus (anecdotal evidence)
- Agent specific preference

Adding bus line 860

Analysis of winners and losers: concept

How many?

Using 804, 806, 860 as part of journey **Gains and losses?**

- a) Travel time
- b) Waiting time
- c) Transfers

Where?

Changes in travel time for 860, 804 and 806 users

Winners and losers of 860: interactive analysis of effects in Tableau

Amendment of Bus 51: split at Ganges Avenue, Opp Blk 79

Detection of cutting point: based on waiting time


```
\min \gamma = \gamma_1 + \gamma_2 + \theta \times \gamma_3
```


Bus 51 Jurong to Hougang, 5-8pm, before line split simulated in MATSim vs Cepas

Hougang Chi III (16409) Naung C (16011) Bit Nativity C 10 (16011) Bit 21 (10224) Bit 21 (10224) Bit 21 (10209) Bit 12 (10209) Bit 12 (10209) Bit 12 (10209) DCDF Hougang Caree (10228) Bit Hougang Caree (10228) DCDF Hougang Caree (10228) D

Bik 222 (72011) Bik 17 (83111) Euros 2h (83101) Bik 416 (8202) Aft Tg Katong Cpfx (82011) 2ins Vile (81051) Clevkang East Ave 2 (81031)

Aljunied Stn (81011 Bet Lar 20 Geylang (80001 Yi 30u Pry Bidg (80001 At Lor 1 Geylang (80051 Kalang Stn (80031 pp 2rt Manmatha K Tp (80011 Lavender Stn (01311 Opp Bik 461 (01211 Stamford Pr Sch (01121 Back Stn (01133

Allaon Hotel (D1012) Armenian Ch (04142) Clarler Ouay Str. (04222) Apolo Cir (05023) Ch 10 (06180) River PI Canolo (06180) River View Hotel (06159) op Haldag inn Atham (08149)

Opp Harvest Mans (10229) Bit 79 (10239)

Simulated in MATSim before line split

Simulated in MATSim after line split

Changes in travel time for 51 split, BUT......

...... to few iterations -> line switcher are still searching for better routes

- avg. worst score - avg. best score - avg. of plans' average score - avg. executed score

III Using MDSS for validation of MATSim demand and calibration of simulation

Towards a more accurate MATSim Singapore model

Pieter Fourie, Alex Erath, Michael van Eggermond

Tableau visualization

SQL cross-joins and aggregations

MDSS for calibration

Public transport: trip distance distribution - MATSim vs Cepas vs HITS

Public transport: trip distribution: MATSim vs Cepas

IVUnderstand the City from Building Scale to Regional ScaleDetection of urban activities beyond home/work using Cepas data

Chen Zhong, Xianfeng Huang, Stefan Müller Arisona

Background

38/2

4

"Space Shapes the transportation as much as transportation shapes the space." (Rodrigue et al. 2009).

Motivation: better understand urban space, dynamics, especially, interaction between human and built environment

Data: transportation data **Question**: Reality =? Plan : function and spatial structure

Our work

- 1. Infer individual travel purpose
- 2. How individuals' activities re-shape the city
- 3. how to find the city centers

39/2

1. Infer travel purposes and building functions

Data:

- EZLink data
- Household Interview Travel Survey (HITS) data:

Method – Patterns of travel behaviors (statistic data from HITS)

41/2

(also referred to other literature)

Using Bayesian classifier to find the most possible purpose, with HITS data as the prior probability.

42/2

Giving a prior information and trip information, the probability of a travel purpose $p(a_a, b_t, a_d, a_f) \models p(a_i \mid c)$

Method – Bayesian probabilistic model + spatial analysis

Table A Original trip									_	
	Trip_id	Р	type	stop	ld	Arr	time	Staytime	L	freq
	2000*********00		3		28499	7.6	79773	10.3763	4	6
	2000*********00		3		21069	6.5	28593	11.3839	1	2
	2000*********00		1		21639	0.2	63213	21.3948	4	2
	2000*********00		1		21639	18.	18231	1.15768	5	2
	2000*********00		2		21759	6.8	85319	11.9399	6	2
	2000*********00		2		21651	16.	61348	1.18874	1	1
	2000*********00		3		21149		7.874	9.66655	6	3
	2000*********00		2		21759	6.8	83111	11.0152	2	3
	2000*********00		2		21759	6.	86131	12.844	B	1

Table C. Summed posterior probability

stop id	е	s	w	h	с	v	max
284**	0.2797	0.1981	0.1510	0.2696	0.2131	0.1595	е
283**	0.2994	0.2258	0.2053	0.2008	0.2351	0.1794	е
282**	0.0506	0.3281	0.4008	0.2659	0.2863	0.2379	w
280**	0.0234	0.2247	0.0534	0.3877	0.2286	0.1960	h
284**	0.0942	0.4955	0.3436	0.1241	0.4320	0.3625	s
280**	0.1566	0.1926	0.2368	0.2461	0.1760	0.1582	h
280**	0.0769	0.2611	0.1089	0.3817	0.3136	0.2182	h

	Table B. Prior probability ψ											
f	req	education	shopping	working	homing	eating	social- visiting					
	1	0.031165	0.714492	0.152148	0.139172	0.614155	0.586769					
1	2	0.020701	0.135544	0.03715	0.035877	0.116438	0.121764					
7	3	0.036624	0.102379	0.047331	0.053844	0.086758	0.09396					
	4	0.047998	0.010094	0.031697	0.031878	0.034247	0.023969					
	5	0.852366	0.025234	0.577914	0.593016	0.121005	0.087248					
	6	0.009327	0.009373	0.136406	0.130273	0.015982	0.056568					
	7	0.00182	0.002884	0.017353	0.015939	0.011416	0.029722					

Content of the second s

Check prior probability of travelling purpose

43/2

4

44/24

Objective: travel behavior \rightarrow activity type (travel purpose) and b

Result – Probability distribution of certain activities in Jurong East

(f) Social visiting place

Value:

high: 1

45/2

(e) Eating place

(d) Studying place

low: 0

Result – Assigning function to building

Jurong primary school

IMM Shopping center

Dangerous Goods Management Pte

Building functions in Jurong East area (left) and Rochor area (right).

2. Detect spatial structure of centers and their spatial impacts

Question: How collective activities shape the urban space? Data: Household Interview Travel Survey (HITS) Data

HITS data provide many information -> How to find real center

48/24

Entropy map of activity types using travel survey 2008

19/24

Many people go there → Density

Many types of function(activities) → Entropy

50/24

Method – Centrality index

Convolution

The joint probability dense function of two independent events is the convolution

 $C_{xy} = P_D(x, y) \otimes P_E(x, y)$

Detected centers in 2004 (top) and 2008 (bottom)

(Copied from course material – theory is urban design)

How the people's **activities re-shape** the region? Data: EZLink Data

Complex networks (bus stop/MRT statin as the nodes)

Method – Spatial analysis + complex network analysis

		Weighted_De	Modularity_	Clustering_	Closeness_	Betweenness_
Label	Degree	gree	Class	Coefficient	Centrality	Centrality
1012	533	2418	1	0.168256	0.488631	1.73E-04
1013	382	1654	1	0.180353	0.493501	8.17E-05
1019	355	1301	1	0.199139	0.47837	4.26E-05

	2011_MRT&BUS _n	2010_MRT&BUS _D	2008_MRT _D	2008_MRT _F	2008_BUS _D	2008_BUS _F
Number of nodes	MRT: 4514 BUS:107	MRT: 4531 BUS:108	93	93	4131	4139
Number of edges	702803	621731	3843	3733	213103	108109
Avg. path length	2.177 (di)	2.004 (indi)	1.101	1.127	2.5403	2.5762
Avg. clustering	Diameter	0.250 (di) 0.392 (indi)	0.9341	0.9216	0.562047	0.533689
centrality						
Avg. Elgenvector	0.115567 (di)	0.1030 (di) 0.131633	0.103	0.103	0.0104	0.0102
centrality	0.141721 (indi)	(indi)				

Result – Complex networks parameters – Closeness

Closeness distribution of bus stops & MRT stations Interpolated closeness distribution

Result – Complex networks analysis – Community (spatial) structure of borders

Communities of complex networks re-project to map

Concept plan 1991

56/24

Conclusion and Future Work

Integrated methods to infer urban activities and to detect spatial structures from transportation data.

In the further, we want to further understand the **dynamic** urban space in terms of changing travel behavior, spatial impacts of urban developments, which could contribute to the future transportation plan.

The need for more (historical) data

To compare the travel behaviors before and after the operation of new MRT line.

To find the cause and sequence of changing.

Could provide reference information for LTA to optimize/adjust the transportation system.

V Outlook

Optimisation of mobility pricing

- Distance based vs point/zone based
- Impact on PT
- Heterogeneous willingess to pay
- Relevance of time adaptation

Coordination within household:

- 12% of pick up and drop off activities (HITS 08)
- How drives the car and with whom, when and where
- Behavioral modeling with HITS data
- Implementation in MATSim

Weekly model

- Planning horizon of 1 week
- Which activity on that day
- Regularity of travel
- SMART MIT HITS 2012 survey as data basis?

Bus optimisation

- Determinants of link travel time (in between stops)
- Guidelines for network design and operation improvements
- Evaluation of proposed measures

Location-fine decision models

- Building fine accessibility
- Impact of accessibility on land and real estate value
- Where do people in Singapore move, when and why?

Social network and mobility:

- Geography of social networks in Singapore
- Impact of transport infrastructure
- Mobility biographies

Measure currently used

$$P_i = \sum_{j=1}^n O_j \exp\left(-\lambda t_{ij}\right)$$

- **P**_i Potential number of activities accessible to building *i*
- O_i Opportunities in building j
- λ Distance decay factor
- t_{ij} Travel time from *i* to *j*

Methodology

- 1. Calculate shortest travel time by transit between all transit stops in MATSim per time interval
- 2. Select 5 transit stops within 500m closest to building *i* and *j* (euclidean)
- 3. Select shortest travel time between the 25 stops

To-do

- 1. Evaluate distance decay factor and formula
- 2. Evaluate transit stop selection
- 3. Use generalized costs including walking time to bus stop
- 4. Incorporate pedestrian network for 'true' pedestrian costs

First results: object fine, Hansen style accessibility to WORKPLACES with pt

First results: object fine, Hansen style accessibility to **RESIDENTIAL UNITS** with pt

MSc project + side projects

Hedonic regression of commercial, office and industrial real estate

- Accessibility
- Transport infrastructure and real estate value

Calibration and validation of MATSim

- Travel speed and congestion
- Mode, route, time and location choice
- Test data
 - Circle line extension
 - Peak spreading travel for free

Traffic light meta model

• Simplified, demand sensitive model for traffic lights in MATSim

Proposal: Cooler Calmer Singapore (NRF)

- Impact of electrified Singapore
- MATSim Singapore as key data source

Proposal: bus network optimisation for NUS

- MATSim NUS Campus (incl surroundings)
- Evaluation of new bus network and mobility concepts

Proposal: Walkability (URA)

- How to nudge people to walk more?
- Quantifying pedestrian behaviour
- Evaluation of pedestrian environments

4 weeks of Cepas

Statistical model explaining mean and variability of **travel time between stops**

- Time of day
- Influence of traffic light (and flows)
- Availability of bus lane
- Overlapping bus lines
- Number of bus lines serving a stop (and flows)\
 Even more accurate simulation of public transport in MATSim

Weekly dynamics

- Long term regularity of demand (and encounter networks)
 - Locations
 - Trip times
- Stability of route choice

HITS 2012

Coordination within household

- Who drives, with whom, when where
- Behavioral model

Service: Generating trip information for non-chosen modes

• Mode choice revealed preference

Long term development of car ownership

Merging with HITS 2004, 2008

SMART Mobility Survey

- Weekly model
- Location choice models

Urban Sustainability R&D Congress: 27. - 28. June 2013 Object fine accessibility

FCL Midterm review: 6. - 7. September 2013

Special session on Mobility and Transport

EASTS 2013: 9. - 12. September 2013 MDSS | Generating pedestrian networks for accessibility computation

SITCE:

7. - 10. October 2013 MATSim as tool for public transport planning

Appendix

Before shortcut: After short cut: 95 stops, 37 km, -5 stops, -2.2km

Thanks
Appendix I:

Degree distribution of the bus stops & MRT stations

Appendix II:

Authority values of bust stops & MRT stations