Agent-based modelling of travel behaviour and flow: The MATSim implementation in Singapore and elsewhere

KW Axhausen

IVT
ETH
Zürich

March 2013
Thinking about equilibrium
DUE, SO & SUE

Wardrop (1952):

1. The journey times on all the routes actually used are equal, and less than those which would be experienced by a single vehicle on any unused route.
2. The average journey time is a minimum.

Daganzo and Sheffi’s (1977) define SUE for the aggregate case:

“In a SUE network, no user believes he can improve his travel time by unilaterally changing routes.”
Packing problem of the DUE, SO & SUE

Given the

Agent’s daily schedules of predetermined detail

Subject to some

Max F

up to the resolution of the agents, links and facilities

Matching the

Expected elasticities with respect to the generalized costs
Known correlations between the details of the plans
Capacity constraints on the links, services and facilities
Minimum loads for some of the facilities

HK March 13
“Activity based approach”
Key points of the critique of equilibrium approaches

- Travel is derived demand, with some exceptions
- The travellers are constrained by their commitments and tool ownership
- Travellers aren’t in equilibrium
- Travellers don’t know all alternatives
- Travellers don’t plan their whole day (week) in advance
Processes suggested to model personal daily dynamics

Activity repertoire (t) → Activity repertoire (t+1)
Activity calendar (t) → Activity schedule (t) → Rescheduling, Execution → Updates, Innovations
Scheduling

Physiological needs
Commitments
Desires
Pending activities

Networks, Opportunities

Mental map (t) → Mental map (t+1)

HK March 13
How to find the SUE in an agent-based approach?
Learning approach of the generic one-day transport model

Competition for slots on networks and in facilities

$k(t,r,j)_{i,n}$

$q_i \equiv (t,r,j)_{i,n}$

Mental map

Activity scheduling
Equilibrium search in „ABM“ & assignment combinations

Initial schedules

OD aggregation

Assignment

\[Q_{ij,t} \]

\[q_i \equiv p(t,r,j)_{i,n} \]

Distribution of schedules

\[k(t,r,j)_Q \]
Equilibrium search in MATSim

Initial schedules

Simulation of flows on networks and to facilities

Score (utility) calculation

\[q_i \equiv (t, r, j)_{i,n} \]

(Optimal) Replanning (inc. connection)

\[U_i(t, r, j)_{i,n} \]
MATSim: A GNU public licence software project
MATSim: A GNU public licence software project

Main partners

- TU Berlin (Prof. Nagel)
- ETH Zürich
- senezon (Dr. Balmer, Dr. Rieser)

Coordination via:

- User meeting
- Conceptual meeting
- Developer meeting

- Code committee
- Regular releases of the code

HK March 13
Known implementations

<table>
<thead>
<tr>
<th>Location</th>
<th>Scale (agents)</th>
<th>Schedules</th>
<th>DTA</th>
<th>Equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switzerland</td>
<td>10^6</td>
<td>MATSim</td>
<td>MATSim</td>
<td>Yes</td>
</tr>
<tr>
<td>Berlin</td>
<td>10^6</td>
<td>MATSim</td>
<td>MATSim</td>
<td>Yes</td>
</tr>
<tr>
<td>München</td>
<td>10^6</td>
<td>MATSim</td>
<td>MATSim</td>
<td>Yes</td>
</tr>
<tr>
<td>Singapore</td>
<td>10^6</td>
<td>MATSim</td>
<td>MATSim</td>
<td>Yes</td>
</tr>
<tr>
<td>Gauteng</td>
<td>10^6</td>
<td>MATSim</td>
<td>MATSim</td>
<td>Yes</td>
</tr>
<tr>
<td>Cape Town</td>
<td>10^6</td>
<td>MATSim</td>
<td>MATSim</td>
<td>Yes</td>
</tr>
<tr>
<td>(Seoul)</td>
<td>10^7</td>
<td>MATSim</td>
<td>MATSim</td>
<td>Yes</td>
</tr>
<tr>
<td>(Shanghai)</td>
<td>10^7</td>
<td>MATSim</td>
<td>MATSim</td>
<td>Yes</td>
</tr>
<tr>
<td>Tel Aviv</td>
<td>10^6</td>
<td>ABM</td>
<td>MATSim</td>
<td>-</td>
</tr>
<tr>
<td>Toronto</td>
<td>10^7</td>
<td>Tasha</td>
<td>MATSim</td>
<td>-</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>10^7</td>
<td>CEMDAP</td>
<td>MATSim</td>
<td>-</td>
</tr>
<tr>
<td>Netherlands</td>
<td>10^7</td>
<td>Albatross</td>
<td>MATSim</td>
<td>-</td>
</tr>
<tr>
<td>Dublin</td>
<td>10^6</td>
<td>-</td>
<td>MATSim</td>
<td>-</td>
</tr>
<tr>
<td>(London)</td>
<td>10^7</td>
<td>ABM</td>
<td>MATSim</td>
<td>-</td>
</tr>
</tbody>
</table>
MATSim today
Following the agents
Initial plan of agent 1:
- Home 8:00
- Leg 0.20 Car Link 1, 2
- Work 8:00
- Leg 0:20 Car Link 2,1
- Home 7:40

Agent 2
- Home 8:00
- Leg 0.20 Car Link 3, 2
- Work 8:00
- Leg 0:20 Car Link 2, 3
- Home 7:40
List of scheduled events at 8:00

Agent 1 Enter link 1 8:00

Calculate free flow time on link 1 \(dt = 0.15 \)

Agent 2 Enter link 3 8:00

Calculate free flow time on link 3 \(dt = 0.16 \)
List of scheduled events at 8:01

Agent 1 Join queue at end of link 1 8:15

Agent 2 Join queue at end of link 3 8:16
List of scheduled events at 8:15

Agent 1 Check queue at end of link 1 8:15

Can agent 1 leave the link?
If yes, add
Agent 1 Leaves link 1 8:15
If no, add
Agent 1 At end of queue 8:16

Agent 2 Join queue at end of link 3 8:16
MATSim: Logic of the co-evolution – Step 0

Agent 1
 Plan 1.1 H-W-H; 8:00, 17:00; C,C;

Agent 2
 Plan 2.1 H-W-H; 8:00, 17:00; C,C;

Agent 3
 Plan 3.1 H-W-H; 8:00, 17:00; C,C;
Co-evolution – Step 1.1 – Simulation/scoring

<table>
<thead>
<tr>
<th>Agent 1</th>
<th>Plan 1.1</th>
<th>H-W-H; 8:00, 17:00; C,C;</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent 2</td>
<td>Plan 2.1</td>
<td>H-W-H; 8:00, 17:00; C,C;</td>
<td>35</td>
</tr>
<tr>
<td>Agent 3</td>
<td>Plan 3.1</td>
<td>H-W-H; 8:00, 17:00; C,C;</td>
<td>35</td>
</tr>
</tbody>
</table>
Co-evolution – Step 1.2 – After replanning (1/3)

<table>
<thead>
<tr>
<th>Agent 1</th>
<th>Plan 1.1</th>
<th>H-W-H; 8:00, 17:00; C,C;</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent 2</td>
<td>Plan 2.1</td>
<td>H-W-H; 8:00, 17:00; C,C;</td>
<td>35</td>
</tr>
<tr>
<td>Agent 3</td>
<td>Plan 3.1</td>
<td>H-W-H; 8:00, 17:00; C,C;</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Plan 3.2</td>
<td>H-W-H; 8:15, 17:30; C,C</td>
<td></td>
</tr>
</tbody>
</table>
Co-evolution – Step 1.3 – After plan selection (best/MNL)

<table>
<thead>
<tr>
<th>Agent 1</th>
<th>Plan 1.1</th>
<th>H-W-H; 8:00, 17:00; C,C;</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent 2</td>
<td>Plan 2.1</td>
<td>H-W-H; 8:00, 17:00; C,C;</td>
<td>100%</td>
</tr>
<tr>
<td>Agent 3</td>
<td>Plan 3.1</td>
<td>H-W-H; 8:00, 17:00; C,C;</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Plan 3.2</td>
<td>H-W-H; 8:15, 17:30; C,C;</td>
<td>New</td>
</tr>
</tbody>
</table>
Co-evolution – Step 2.1 – Simulation/scoring

Agent 1
 Plan 1.1 H-W-H; 8:00, 17:00; C,C; 45

Agent 2
 Plan 2.1 H-W-H; 8:00, 17:00; C,C; 45

Agent 3
 Plan 3.1 H-W-H; 8:00, 17:00; C,C; 35
 Plan 3.2 H-W-H; 8:15, 17:30; C,C; 60
Co-evolution – Step 2.2 – After replanning (1/3)

<table>
<thead>
<tr>
<th>Agent 1</th>
<th>Plan 1.1</th>
<th>H-W-H; 8:00, 17:00; C,C;</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plan 1.2</td>
<td>H-W-H; 8:00, 17:00; B,B;</td>
<td></td>
</tr>
<tr>
<td>Agent 2</td>
<td>Plan 2.1</td>
<td>H-W-H; 8:00, 17:00; C,C;</td>
<td>45</td>
</tr>
<tr>
<td>Agent 3</td>
<td>Plan 3.1</td>
<td>H-W-H; 8:00, 17:00; C,C;</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Plan 3.2</td>
<td>H-W-H; 8:15, 17:30; C,C;</td>
<td>60</td>
</tr>
</tbody>
</table>

HK March 13
<table>
<thead>
<tr>
<th>Agent 1</th>
<th>Plan 1.1</th>
<th>H-W-H; 8:00, 17:00; C,C;</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plan 1.2</td>
<td>H-W-H; 8:00, 17:00; B,B;</td>
<td>New</td>
</tr>
<tr>
<td>Agent 2</td>
<td>Plan 2.1</td>
<td>H-W-H; 8:00, 17:00; C,C;</td>
<td>100%</td>
</tr>
<tr>
<td>Agent 3</td>
<td>Plan 3.1</td>
<td>H-W-H; 8:00, 17:00; C,C;</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td>Plan 3.2</td>
<td>H-W-H; 8:15, 17:30; C,C;</td>
<td>62%</td>
</tr>
<tr>
<td>Agent</td>
<td>Plan 1.1</td>
<td>Plan 1.2</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Agent 1</td>
<td>H-W-H; 8:00, 17:00; C,C;</td>
<td>H-W-H; 8:00, 17:00; B,B;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agent 2</td>
<td>H-W-H; 8:00, 17:00; C,C;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agent 3</td>
<td>H-W-H; 8:00, 17:00; C,C;</td>
<td>H-W-H; 8:15, 17:30; C,C;</td>
<td></td>
</tr>
</tbody>
</table>

HK March 13
Co-evolution – Step 3.2 – After replanning (1/3)

Agent 1
 Plan 1.1 H-W-H; 8:00, 17:00; C,C; 45
 Plan 1.2 H-W-H; 8:00, 17:00; B,B; 70

Agent 2
 Plan 2.1 H-W-H; 8:00, 17:00; C,C; 45

Agent 3
 Plan 3.1 H-W-H; 8:00, 17:00; C,C; 45
 Plan 3.2 H-W-H; 8:15, 17:30; C,C; 60
 Plan 3.3 H-W-H; 7:30, 17:15; B,B
Co-evolution – Step 3.3 – After plan selection (best/MNL)

Agent 1
- Plan 1.1: H-W-H; 8:00, 17:00; C,C; 36%
- Plan 1.2: H-W-H; 8:00, 17:00; B,B; 64%

Agent 2
- Plan 2.1: H-W-H; 8:00, 17:00; C,C; 100%

Agent 3
- Plan 3.1: H-W-H; 8:00, 17:00; C,C; 45
- Plan 3.2: H-W-H; 8:15, 17:30; C,C; 60
- Plan 3.3: H-W-H; 7:30, 17:15; B,B New

(The (worst) plan more then memory allows is deleted)
Co-evolution – Summary of best scores

<table>
<thead>
<tr>
<th></th>
<th>Iteration 1</th>
<th>Iteration 2</th>
<th>Iteration 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent 1</td>
<td>35</td>
<td>45</td>
<td>80</td>
</tr>
<tr>
<td>Agent 2</td>
<td>35</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Agent 3</td>
<td>35</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Mean</td>
<td>35</td>
<td>50</td>
<td>62</td>
</tr>
</tbody>
</table>

HK March 13
Activity schedule dimensions
Activity scheduling dimensions

Number and type of activities
Sequence of activities

• Start and duration of activity
• Composition of the group undertaking the activity
• Expenditure division
• Location of the activity

• Movement between sequential locations

• Location of access and egress from the mean of transport
 • Parking type
• Vehicle/means of transport
• Route/service
• Group travelling together
• Expenditure division
Current Vickrey-type utility function

\[U_{plan} = \sum_{i=1}^{n} U_{act,i} + \sum_{i=2}^{n} U_{trav,i-1,i} \]

\[U_{act,i} = U_{dur,i} + U_{late.ar,i} \]
2010 MATSim: Initial demand

Population: Census-based (sample); Through traffic from surveys

Number, type, sequence and duration of activities:
- Conditional random draw from observed categorised MZ 2000-2005 distributions by person type
- Location of work/school activity:
 - Draws from a (Census) commuter matrix
- Location of secondary activities:
 - Random constrained selection or
 - Capacity-constrained MNL within a time-space prism
- Mode choice:
 - MZ-based subtour MNL
- Route choice:
 - Improved A* shortest path
Mode choice: Subtour

- Subtour 1.1
- Subtour 1.2
- Subtour 2.1
2010 MATSim configuration: Iteration

Number and type of activities
Sequence of activities

• Start and duration of activity
 • Random mutation
 • Planomat: GA optimiser
• Composition of the group undertaking the activity
• Expenditure division
• Location of the activity

• Location of access and egress from the mean of transport
 • Parking type
• Vehicle/means of transport
• Route/service
• Group travelling together
• Expenditure division
2009 MATSim Switzerland: Configuration

During the iterations:

- Optimisation of start time and duration of the activities
- Random location of the activity (with capacity constraint)
- Vehicle/means of transport at sub-tour level
- Optimal routes
- Event-oriented queue-based traffic flow simulation

For a search space of:

- 6.0×10^6 agents with 11 activity types
- 1.6×10^6 facilities
- 0.8×10^6 links
- $24 \times 60 \times 60$ seconds
2009 MATSim Switzerland: Computing time
Quality of the results: Overall counts
Quality of the results: A1 at Winterthur (no transit traffic)
Current progress: Berlin

Network: 113,000 links
Population: 4.5 million agents
Public Transport: 530 lines, 96 transit vehicle types
Mode choice, Departure time choice, Route choice (car + transit)
Current progress: Switzerland

Network: ~ 1 million links (navigation network)
Population: 8 million
Complete public transport (all trains, buses, trams, cablecars, …)
Mode choice, Departure time choice, Route choice (car + transit)
Current progress: Switzerland (cont‘d)

Using the model also for site assessment and pedestrian counts
Current progress: Los Angeles

Network: 108 000 links
Population: 10+ million agents
Public transport: Estimated travel times only
Mode choice, Departure time choice, Route choice
Current progress: Singapore

Network: 80,000 links
Population: 5 million
Complete public transport (bus, MRT)
Mode choice, Departure time choice, Route choice (car + transit)

HK March 13
Current progress: Singapore
Schedule detail possibilities (in current stable MATSim)

Number and type of activities
Sequence of activities

- Start and duration of activity
- Composition of the group undertaking the activity
- Expenditure division
- Location of the activity
- Movement between sequential locations
- Location of access and egress from the mean of transport
 - Parking search and type
- Vehicle/means of transport
- Route/service
- Group travelling together
- Expenditure division
Singapore extensions: Allocating work locations
Work location model: motivation and idea

Background:
- Number and location of work activities is crucial for transport modeling
- No enterprise census
- Business registration files problematic for actual work location estimation

Combination of various data sources:
- Boarding and alighting activities at stops
- Land use type and gross plot ratio
- Building footprint
- Mode share
Detection of work activities: start time

Work activities

Home activities

Activity start time

Number of activities

HK March 13
Applying to public transport smart card records
Scaling by mode shares as observed from travel diary
Distribution to single buildings

Singapore extensions: Interaction between car and buses

HK March 13
Interaction between car and buses (purple)

Without buslane:
Adam Rd / PIE

With buslane:
Gelyang Rd, aft Sims Way

Source: maps.google.com
HK March 13
Simulation of public transport supply in Singapore

Video available at http://vimeo.com/37719740

HK March 13
Next challenge: Social networks
Next challenge: Social networks
Next challenge: Social network imputation

Data needs:
- Snowball samples
- Phone/SMS-based networks
- (email based networks)

Population synthesis:
- Model definition and estimation (e.g. ERGM, Arentze et al.)
- Scale
- Validation data
Next challenge: Social network informed models

Data needs:

- Diaries with social contact information
- Information acquisition diary
- Expenditure allocation surveys

Choice models:

- Location choice
- Resource sharing (vehicles, tasks) (in households, groups)
Next challenges: Integration of land use (optimisation)
Next challenges: Integration of land use (optimisation)

- \(\Delta \)Population
- \(\Delta \)growth
- \(\Delta \)Prices
- \(\Delta \)Climat

\[d_{xy,t} \]

\[p_{xy,t} \]

\[k_{i,j,t} \]

Travel and land use model

Impacts and Mass flows

Space/mass optimisation

GIS\(^3\)

Grammars land scape
Grammars urban design
Grammars infrastructure
Regulation/laws
Sustainability
MATSim @ ETHZ, TU Berlin, FCL, Senozon (past & present)

Prof. Kay Axhausen
Dr. Michael Balmer
Dr. David Charypar
Dr. Nurhan Cetin
Artem Chakirov
Yu Chen
Francesco Ciari
Christoph Dobler
Thibaut Dubernet
Dr. Alexander Erath
Dr. Matthias Feil
Dr. Gunnar Flötteröd
Pieter Fourie
Dr. Christian Gloor
Dominik Grether
Dr. Jeremy K. Hackney
Andreas Horni
Johannes Illenberger
Dr. Gregor Lämmel
Nicolas Lefebvre
Prof. Kai Nagel
Dr. Konrad Meister
Manuel Moyo
Kirill Müller
Andreas Neumann
Thomas Nicolai
Benjamin Kickhöfer
Sergio Ordonez
Dr. Bryan Raney
Dr. Marcel Rieser
Dr. Nadine Rieser
Lijun Sun
Alexander Stahel
Dr. David Strippgen
Michael Van Eggermond
Rashid Waraich
Michael Zilske

HK March 13
Questions?

www.matsim.org
www.ivt.ethz.ch
www.futurecities.ethz.ch
www.senozon.ch