Axhausen, K.W. (2013) Agent-based modelling of travel behaviour and flow: The MATSim implementation in Singapore and elsewhere, presentation at a seminar of Hong Kong Society for Transportation Studies and The Hong Kong Polytechnic University, Hong Kong, March 2013.

Agent-based modelling of travel behaviour and flow: The MATSim implementation in Singapore and elsewhere

KW Axhausen

IVT ETH Zürich

March 2013

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Wardrop (1952):

- The journey times on all the routes actually used are equal, and less than those which would be experienced by a single vehicle on any unused route.
- 2. The average journey time is **a** minimum.

Daganzo and Sheffi's (1977) define SUE for the aggregate case:

"In a SUE network, no user believes he can improve his travel time by unilaterally changing routes."

Packing problem of the DUE, SO & SUE

Given the

Agent's daily schedules of predetermined detail

Subject to some

Max F

up to the resolution of the agents, links and facilities

Matching the

Expected elasticities with respect to the generalized costs Known correlations between the details of the plans Capacity constraints on the links, services and facilities Minimum loads for some of the facilities

Key points of the critique of equilibrium approaches

- Travel is derived demand, with some exceptions
- The travellers are constrained by their commitments and tool ownership
- Travellers aren't in equilibrium
- Travellers don't know all alternatives
- Travellers don't plan their whole day (week) in advance

Processes suggested to model personal daily dynamics

How to find the SUE in an agent-based approach?

Learning approach of the generic one-day transport model

Equilibrium search in "ABM" & assignment combinations

MATSim: A GNU public licence software project

Main partners

- TU Berlin (Prof. Nagel)
- ETH Zürich
- senezon (Dr. Balmer, Dr. Rieser)

Coordination via:

- User meeting
- Conceptual meeting
- Developer meeting
- Code committee
- Regular releases of the code

Known implementations

Location	Scale (agent	Schedules s)	DTA	Equi- librium
Switzerland	10 ⁶	MATSim	MATSim	Yes
Berlin	10 ⁶	MATSim	MATSim	Yes
München	10 ⁶	MATSim	MATSim	Yes
Singapore	10 ⁶	MATSim	MATSim	Yes
Gauteng	10 ⁶	MATSim	MATSim	Yes
Cape Town	10 ⁶	MATSim	MATSim	Yes
(Seoul)	10 ⁷	MATSim	MATSim	Yes
(Shanghai)	10 ⁷	MATSim	MATSim	Yes
Tel Aviv	10 ⁶	ABM	MATSim	_
Toronto	10 ⁷	Tasha	MATSim	-
Los Angeles	10 ⁷	CEMDAP	MATSim	-
Netherlands	10 ⁷	Albatross	MATSim	-
Dublin	10 ⁶	-	MATSim	-
_⊣ (l₊ondon)	10 ⁷	ABM	MATSim	-

Following the agents

Initial plan of agent 1:

- Home 8:00
- Leg 0.20 Car Link 1, 2
- Work 8:00
- Leg 0:20 Car Link 2,1
- Home 7:40

Agent 2

- Home 8:00
- Leg 0.20 Car Link 3, 2
- Work 8:00
- Leg 0:20 Car Link 2, 3
- Home 7:40

List of scheduled events at 8:00

Agent 1 Enter link 1 8:00

Calculate free flow time on link 1 dt = 0.15

Agent 2 Enter link 3 8:00

Calculate free flow time on link $_3 dt = 0.16$

List of scheduled events at 8:01

- Agent 1Join queue at end of link 18:15
- Agent 2 Join queue at end of link 3 8:16

List of scheduled events at 8:15

Agent 1Check queue at end of link 18:15

```
Can agent 1 leave the link ?
If yes, add
Agent 1 Leaves link 1 8:15
If no, add
Agent 1 At end of queue 8:16
Agent 2 Join queue at end of link 3 8:16
```

Agent 1 Plan 1.1 H-W-H; 8:00, 17:00; C,C; Agent 2 Plan 2.1 H-W-H; 8:00, 17:00; C,C; Agent 3 Plan 3.1 H-W-H; 8:00, 17:00; C,C;

Agent 1 Plan 1.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 2 Plan 2.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 3 Plan 3.1	H-W-H; 8:00, 17:00; C,C;	35

Agent 1 Plan 1.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 2 Plan 2.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 3 Plan 3.1 Plan 3.2	H-W-H; 8:00, 17:00; C,C; H-W-H; 8:15, 17:30; C,C	35

Agent 1 Plan 1.1	H-W-H; 8:00, 17:00; C,C;	100%
Agent 2 Plan 2.1	H-W-H; 8:00, 17:00; C,C;	100%
Agent 3 Plan 3.1	H-W-H; 8:00, 17:00; C,C;	35
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	New

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	35
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	60

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	35
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	60

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	New
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	100%
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	38%
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	62%

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	70
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	60

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	70
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	60
Plan 3.3	H-W-H; 7:30, 17:15; B,B	

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	36%
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	64%
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	100%
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	-45
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	60

Plan 3.3 H-W-H; 7:30, 17:15; B,B New

(The (worst) plan more then memory allows is deleted)

	Iteration 1	Iteration 2	Iteration 3
Agent 1 Agent 2	35	45 45	80 45
Agent 3	35	45 60	60
Mean	35	50	62

Number and type of activities Sequence of activities

- Start and duration of activity
- Composition of the group undertaking the activity
- Expenditure division
- Location of the activity
 - Movement between sequential locations
 - Location of access and egress from the mean of transport
 - Parking type
 - Vehicle/means of transport
 - Route/service
 - Group travelling together
 - Expenditure division

Current Vickrey-type utility function

$$U_{plan} = \sum_{i=1}^{n} U_{act,i} + \sum_{i=2}^{n} U_{trav,i-1,i}$$

$$U_{act,i} = U_{dur,i} + U_{late.ar,i}$$

Population: Census-based (sample); Through traffic from surveys

Number, type, sequence and duration of activities:

- Conditional random draw from observed categorised MZ 2000-2005 distributions by person type
- Location of work/school activity:
 - Draws from a (Census) commuter matrix
- Location of secondary activities:
 - Random constrained selection or
 - Capacity-constrained MNL within a time-space prism
 - Mode choice:
 - MZ-based subtour MNL
 - Route choice:
 - Improved A* shortest path

Mode choice: Subtour

Number and type of activities Sequence of activities

- Start and duration of activity
 - Random mutation
 - Planomat: GA optimiser
- Composition of the group undertaking the activity
- Expenditure division
- Location of the activity
 - Location of access and egress from the mean of transport
 - Parking type
 - Vehicle/means of transport
 - Route/service
 - Group travelling together
 - Expenditure division

During the iterations:

- Optimisation of start time and duration of the activities
- Random location of the activity (with capacity constraint)
- Vehicle/means of transport at sub-tour level
- Optimal routes
- Event-oriented queue-based traffic flow simulation

For a search space of:

- 6.0×10^6 agents with 11 activity types
- 1.6 * 10⁶ facilities
- 0.8 * 10⁶ links
- 24 * 60 * 60 seconds

2009 MATSim Switzerland: Computing time

Balmer, 2009

Iteration

Quality of the results: Overall counts

Quality of the results: A1 at Winterthur (no transit traffic)

HK March 13

Network: 113 000 links Population: 4,5 million agents Public Transport: 530 lines, 96 transit vehicle types

Current progress: Switzerland

Network: ~ 1 million links (navigation network) Population: 8 million Complete public transport (all trains, buses, trams, cablecars, ...) Mode choice, Departure time choice, Route choice (car + transit)

Current progress: Switzerland (cont'd)

Using the model also for site assessment and pedestrian counts

Network: 108 000 links Population: 10+ million agents Public transport: Estimated travel times only Mode choice, Departure time choice, Route choice

Current progress: Singapore

Network: 80 000 links

Population: 5 million

Complete public transport (bus, MRT)

Mode choice, Departure time choice, Route choice (car + transit)

Current progress: Singapore

Schedule detail possibilities (in current stable MATSim)

Number and type of activities Sequence of activities

Start and duration of activity

- Composition of the group undertaking the activity (Kowald, Tan, Fourie)
- Expenditure division
- Location of the activity

(Horni)

(Waraich)

(Ciari)

(Feil)

(Ordonez)

- Movement between sequential locations
 - Location of access and egress from the mean of transport
 - Parking search and type
 - Vehicle/means of transport
 - Route/service
 - Group travelling together
 - Expenditure division

HK March 13

(Chakirov) (Dubernet, Fourie)

Singapore extensions: Allocating work locations

Work location model: motivation and idea

Background:

- Number and location of work activities is crucial for transport modeling
- No enterprise census
- Business registration files problematic for actual work location estimation

Combination of various data sources:

- Boarding and alighting
- Land use type and gross ^{...}
 plot ratio
- Building foot print
- Mode share

660 Meters

© 2008 Singapore Land Authority

330

165

Detection of work activities: start time

Work activities

Home activities

Applying to public transport smart card records

HK March 13

© 2011 Land Transport Authority © 2008 Urban Redevelopment Authority

Scaling by mode shares as observed from travel diary

Distribution to single buildings

Singapore extensions: Interaction between car and buses

Interaction between car and buses (purple)

Without buslane: Adam Rd / PIE

With buslane: Gelyang Rd, aft Sims Way

Source: maps.google.com

Simulation of public transport supply in Singapore

Next challenge: Social networks

Data needs:

- Snowball samples
- Phone/SMS-based networks
- (email based networks)

Population synthesis:

- Model definition and estimation (e.g. ERGM, Arentze et al.)
- Scale
- Validation data

Data needs:

- Diaries with social contact information
- Information acquisition diary
- Expenditure allocation surveys

Choice models:

- Location choice
- Resource sharing (vehicles, tasks) (in households, groups)

Next challenges: Integration of land use (optimisation)

Next challenges: Integration of land use (optimisation)

Prof. Kay Axhausen Dr. Michael Balmer Dr. David Charypar Dr. Nurhan Cetin Artem Chakirov Yu Chen Francesco Ciari Christoph Dobler Thibaut Dubernet Dr. Alexander Erath Dr. Matthias Feil Dr. Gunnar Flötteröd **Pieter Fourie**

Dr. Christian Gloor **Dominik** Grether Dr. Jeremy K. Hackney Andreas Horni Johannes Illenberger Dr. Gregor Lämmel Nicolas Lefebyre Prof. Kai Nagel Dr. Konrad Meister Manuel Moyo Kirill Müller Andreas Neumann **Thomas Nicolai**

Benjamin Kickhöfer Sergio Ordonez **Dr. Bryan Raney** Dr. Marcel Rieser Dr. Nadine Rieser Lijun Sun **Alexander Stahel** Dr. David Strippgen **Michael Van Eggermond Rashid Waraich** Michael Zilske

www.matsim.org

www.ivt.ethz.ch www.futurecities.ethz.ch

www.senozon.ch