Decision support tools in transport planning: from research to practice

Alex Erath, Michael van Eggermond, Pieter Fourie, Artem Chakirov

Swiss Transport Research Conference 2013
Monte Verità, 25.4.2013
Advantages and challenges of new transport models

Agent based, activity-based modeling

• New modeling paradigm
• Interdependency of trips and activities, e.g. tour based mode choice

Possible resolution for analysis:

• Individuals
• Parcel or building (or unit) as base unit
• Temporal dynamics

How to deal with the wealth of data?

• Who?
• With how much time?
• What skills?
• New questions?
Current situation I

- Displaying the network and vehicles in the application.
- Highlight one or more transit lines.
- Displaying the complete day plan of a single agent.
- Analyze different aspects, e.g., the number of passengers waiting at a transit stop.
Current situation II
Decision support system for transportation

Transport planners
 • How many trips occur where, when and what is the activity purpose?
 • What are the socio-demographic characteristics of the these persons?

Urban planners:
 • What are the temporal usage patterns of buildings and the surrounding neighbourhood?
 • What is the flow from public transport stops to surrounding buildings?

Policy-makers
 • What are the costs and benefits of a new public transport service?
 • Who are the winners and losers from constructing a new road?

Public transport operators
 • What is the breakdown of the ridership of certain bus lines?

Service industry
 • Which customers are in catchment areas, separated by mode?
Requirements for DSS in transport planning

Functional requirements:

- **Appraisal**
 - Cost-benefit
 - Winners and losers

- **Scope**
 - Journeys
 - Stages (but no routes)
 - Activities

- **Temporal analysis**
 - Full temporal resolution for filtering and aggregation

Technical requirements:

- Open source database with open interface
- Spatial queries
- Interactive front-end for analysis and visualisation
General Framework

Spatial data
- Buildings
- Land use
- Transport network
- Zoning systems

Surveys/Transport data
- Travel diary
- PT usage
- Traffic counts
- Population

Transport model
- Agent-based simulation
- Scenarios

Analysis with GIS and business analytics
- Calibration/Validation
- Location analysis
- Winners and losers
- Application specific

Spatial database

Data cubes
Case study: decision support tool for Singapore

Survey database
- Households
 - household_id
 - person_id
 - income, car availability, etc.
- Persons
 - household_id
 - person_id
 - income, license, etc.
- Journeys
 - person_id
 - journey_id
 - mode, distance, duration, etc.
- Stages
 - journey_id
 - stage_id
 - mode, distance, duration, etc.
- Transfers
 - journey_id
 - transfer_id
 - waiting time, walk time, etc.
- Activities
 - person_id
 - activity_id
 - type, duration, timing, etc.

Spatial database
- Zones/aggregations
 - zone_id
 - area name, other attributes.
- Parcels
 - parcel_id
 - land use, area, etc.
- Buildings/facilities
 - facility_id
 - activity_id
 - activity, facilities, dwelling type, number of units, etc.
- Network links
 - link_id
 - land use, area, etc.
- Transit stops
 - stop_id
 - transit_stop_id
 - bus and rail stops

MATSim database
- Households
 - household_id
 - person_id
 - income, car availability, etc.
- Persons
 - household_id
 - person_id
 - income, license, etc.
- Journeys
 - person_id
 - journey_id
 - mode, distance, duration, etc.
- Stages
 - journey_id
 - stage_id
 - mode, distance, duration (board & alight).
- Transfers
 - journey_id
 - transfer_id
 - waiting time, walk time, etc.
- Activities
 - person_id
 - activity_id
 - type, duration, timing, etc.

SQL cross-joins and aggregations

Tableau visualization
Case study applications

Explorative analysis of travel diary survey (or MATSim output)
 • Spatial selection
 • Special focus
 • Mode share
 • Commuting trips
 • Socio-demographics

Decision cockpit for calibration
 • Comparison between MATSim output and actual observations
 • Pitfalls: data consistency
 • Scope of travel diary vs MATSim, e.g. pick up and drop off
 • Definition of journeys and stages PT smart card vs MATSim
Travel survey: reported vs MATSim routed
Outlook

Decision support for calibration of MATSim Singapore

Engagement with transport planners in practice
 • Explorative analysis of travel diary survey
 • Monitoring of bus operations based on pt smart card data
 • Making MATSim results accessible

Vision:
 • Continuously updated data input
 • Living (3d) city model to be maintain and shared data across stakeholders
 • Automatic generation of MATSim ‘live’ scenarios
 • 3d city model
Appendix
Connect and edit spatial database with Quantum GIS
Connect and edit spatial database with Quantum GIS
How do other disciplines deal with the problem?

1960: First Management Information Systems
 • Interactive analysis
 • Single decision maker

1970: Computer Based Systems to aid decision making
 • Databases and models
 • Financial planning

1980: Decision Support Systems (DSS)
 • Data -> Model -> management software for end user
 • Cognitive psychology and operations research join the club
How do other disciplines deal with the problem?

1990: Group decision support system
 • Various stakeholders with different agendas

2000: Business intelligence
 • Procter&Gamble links retail scanner data to DSS
 • On-Line Analytical Processing (OLAP) for interactive analysis
 • Linkage of various data sources, e.g. from different departments

2010: Visualisation
 • Analyst circumvents data warehouse specialists
 • External, interactive visualisation tools
 • State-of the –Arte visualisation principles