Estimating dynamic workplace capacities using public transport smart card data and a household travel Survey

Sergio Arturo Ordóñez Medina Dr. Alex Erath

Future Cities Laboratory (FCL) Singapore ETH Centre (SEC)

15.01.2013

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Motivation and requirements

Problem

- Activity based transport simulation requires detailed data on activity locations
- Detailed data on e.g. work locations is often not available and hard to obtain
- Traditional surveys are expensive and tedious

Solution

Modeling of work location based on merge of number of data sources:

- Record of public transport journeys
- Travel diary
- Land-use information

Challenges

- How to identify working activities between public transport journeys?
- How to assign number of work places to each building?

MATSim – Agent-based Transport Simulation

HITS Singapore

CEPAS smart card in Singapore

One day travel diary for ~ 1% of Singapore's population

- ~10'500 Households (~ 38'000 people)
- ~ 40'000 activities (incl. home)
- ~15'500 PT consistent activities
 - ~ 7600 home
 - ~ 6100 work
 - ~ 1800 other

JOURNEY_ID	10334624565	10346524565	10346524568	10346524576
CARD_ID	2000232379890	9002933471010	1000700195900	7703533270890
Passenger_Type	Senior Citizen	Adult	Adult	Child/Student
Mode	RTS	Bus	RTS	Bus
Srvc_Num		184		147
Direction		1		0
Bus_Reg_Num		855		156
Origin	STN Bugis	12089	STN City Hall	1211
Destination	STN Bedok	17179	STN Yishun	71109
Date	2011-04-13	2011-04-13	2011-04-13	2011-04-13
Start_Time	12:20:25	12:53:06	18:08:50	22:24:50
Distance	9	2.53	18.8	7.6
Ride_Time	16.4	18.983	32.89	25.733
Fare_Paid	0.86	0.71	1.61	0
Transfer Num	0	0	0	1

Work trips detection (previous work)

Number of **detected work trips** that finish at each stop of Singapore

The time when the work activity starts and the duration

Many work schedules!

Idea: Define categories

Work schedule information

Start time (h)

Which buildings or parcels do the people who alight at a certain stop go to?

Last mile travel times

Maximum capacities

Each building has a size. Then there is a **maximum number of workers** that fit in the building

Туре	Work space(m^2)
Residential	1.00E+05
Commer. & resident.	250
Commercial	18
Hotel	500
Utility	60
Business Park	10
Bussiness 1	12

How many people go to each building at each work schedule?

18:00-03:00

2

?

9:00-18:00

75

8:00-17:30

50

Stop

Parcel

n

Based on information from URA's Master Plan 2008

Distribution to land use parcels.

Minimize last-mile travel time

$$\min\sum_{s\in S}\sum_{p\in P}\sum_{w\in W}x_{spw}tt_{sp} \quad 0 \le x_{spw}$$

People at each bus stops and at each work schedule can not disappear

 $\sum_{p \in P} x_{spw} = q_{sw} \quad s \in S, \ w \in W$

People in a parcel can't exceed the maximum

$$\sum_{s \in S} \sum_{w \in W} x_{spw} \le m_p \qquad p \in P$$

© 2011 Land Transport Authority © 2008 Urban Redevelopment Authority

What about car commuters?

Two necessary procedures

- Deflation of the maximum number of workers
- Inflation of the resulting quantities

Idea:

Use travel diary survey (HITS) for observed mode shares for work trips

Mode share zones (162 zones)

Mode share inflation (proportional)

Quantities of different zones must be inflated with different proportions.

Mode share inflation (pt accessibility-based)

- 1. The number of public transport (pt) users workers is aggregated for each mode share zone.
- 2. The number of non-pt commuters of the zone is estimated.
- 3. The number of non-pt commuters is distributed to the master plan area

Distribution to single buildings

Work schedules and individual buildings

Assumptions

- Constant mode share over different work schedules
- No spatial variation of work space requirements
- Minimization of last-mile travel time only

Outlook – potential projects

- Calculation of walking times with pedestrian network
- Sensitivity analysis
- Application with newer CEPAS dataset

Summary

