Including Individual’s Coordination in a Multi-Agent Transport Simulation

Thibaut Dubernet

Institute for Transport Planning and Systems (IVT)
ETH Zurich

STRC 2013
Introduction

Agent’s Coordination in MATSim

Performance

Conclusions
Introduction

- Most travel simulation tools simulate behavior of *isolated* individuals
 - Individuals make decisions independently, given traffic conditions influenced by others
- Actual individuals coordinate their travel behavior with social contacts
 - Household: joint activities, limited number of cars, altruism
 - Social contacts: joint activities
 - Car-pools: pick-up and drop-off times and locations
- Such coordinated behavior has a quite important empirical influence
 - Joint trips
 - MZ2010: 18% daily traveled distance as “car passenger”
 - MZ2010: 32.5% all car stages done with 2+ persons in the car
 - Leisure location choice
Introduction

Agent’s Coordination in MATSim

Performance

Conclusions
The MATSim View of (Individual) Decision Making

- agents try to optimize their daily plan given their knowledge of the state of transport system
- this state depends on other agent’s behavior
 - random from the agent’s perspective
- search for a good daily plan by a co-evolutionary algorithm: all agents perform an EA simultaneously
 - start with an initial plan
 - iteratively:
 - execute plan, score it
 - delete worst plan if more plans than allowed
 - select a past plan randomly based on score
 - (optional) copy it and modify it
Introduction of Coordination

- need to link plan choice for certain plans of certain agents
- no need to link plan choice for unrelated plans: risks on convergence (slow / toward a wrong state)
- ⇒ individual plans needing coordination are grouped in “joint plans”: sets of individual plans to be selected together.
- ⇒ “incompatibility” between (joint) plans
- redefine replanning:
 1. identify groups of agents to replan together
 2. remove plans part of the worst “non-blocking” plan combination if needed
 3. select feasible combination of individual plans based on scores
 4. (optional) copy and modify those plans
Group Identification

- Some agents have joint plans
- Or use common resources
- "Social ties" along which coordination behavior can be created
- Agents with coordination must be in the same group
Group Identification

- some agents have joint plans
Group Identification

- some agents have joint plans
- or use common resources
Group Identification

- some agents have joint plans
- or use common resources
- “social ties” along which coordination behavior can be created
Group Identification

- some agents have joint plans
- or use common resources
- “social ties” along which coordination behavior can be created
- agents with coordination must be in the same group
Group Identification

- some agents have joint plans
- or use common resources
- “social ties” along which coordination behavior can be created
- agents with coordination must be in the same group
Group Identification

- some agents have joint plans
- or use common resources
- "social ties" along which coordination behavior can be created
- agents with coordination must be in the same group
Plan Selection

1 2 3 4 5

agents have plans
joint plans constraints
incompatibility constraints
aim: model the choice of individual plans, given the constraints
Plan Selection

 Agents have plans

 - joint plans constraints
 - incompatibility constraints
 - aim: model the choice of individual plans, given the constraints
Plan Selection

- agents have plans
- joint plans constraints
Plan Selection

- agents have plans
- joint plans constraints
- incompatibility constraints
Plan Selection

- agents have plans
- joint plans constraints
- incompatibility constraints
- aim: model the choice of individual plans, given the constraints
Plan Selection

- agents have plans
- joint plans constraints
- incompatibility constraints
- aim: model the choice of individual plans, given the constraints
Plan Selection

- agents have plans
- joint plans constraints
- incompatibility constraints
- aim: model the choice of individual plans, given the constraints
Plan Selection

- agents have plans
- joint plans constraints
- incompatibility constraints
- aim: model the choice of individual plans, given the constraints
Plan Selection

- agents have plans
- joint plans constraints
- incompatibility constraints
- aim: model the choice of individual plans, given the constraints
Plan Selection for Removal

- when removing plans, there must remain feasible combinations
Plan Selection for Removal

- when removing plans, there must remain feasible combinations
Plan Selection for Removal

- when removing plans, there must remain feasible combinations
Plan Selection for Removal

- when removing plans, there must remain feasible combinations
Plan Selection for Removal

- when removing plans, there must remain feasible combinations
Plan Selection

- weighted selection: select the feasible combination which maximizes the sum of weights of individual plans
 - scores
 - Gumbel distributed (Logit-like)
 - random
- “utility transfers” in joint plans
- without constraints, same as selecting the plan of highest weight for each agent
- can be done efficiently (branch-and-bound)
Plan Mutation
Plan Mutation

1 2 3 4 5

- copy
Plan Mutation

- copy
- modify:
Plan Mutation

1 2 3 4 5

- copy
- modify:
 - agents interactions
Plan Mutation

- copy
- modify:
 - agents interactions
 - other dimensions
Introduction

Agent’s Coordination in MATSim

Performance

Conclusions
Test Scenario: Shared Vehicles in Households

- “corridor” network, with large capacity (no congestion)
- H-W travel time by car: 6min
- 10010 agents with H-W-H plans
- “desired” work duration 4h, always open
- even-sized fixed cliques, from 2 to 20 members
Test Scenario: Shared Vehicles in Households

- “corridor” network, with large capacity (no congestion)
- H-W travel time by car: 6min
- 10010 agents with H-W-H plans
- “desired” work duration 4h, always open
- even-sized fixed cliques, from 2 to 20 members
Test Scenario: Shared Vehicles in Households

- “corridor” network, with large capacity (no congestion)
- H-W travel time by car: 6min
- 10010 agents with H-W-H plans
- “desired” work duration 4h, always open
- even-sized fixed cliques, from 2 to 20 members
- all agents start with all-car plans
- all agents start with the same time allocation
Test Scenario: Shared Vehicles in Households

- “corridor” network, with large capacity (no congestion)
- H-W travel time by car: 6min
- 10010 agents with H-W-H plans
- “desired” work duration 4h, always open
- even-sized fixed cliques, from 2 to 20 members
- all agents start with all-car plans
- all agents start with the same time allocation
- one vehicle for 4 agents in the clique.
Replanning Strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logit-like choice</td>
<td>0.6</td>
</tr>
<tr>
<td>Mode mutation</td>
<td>0.1</td>
</tr>
<tr>
<td>Random vehicle reallocation</td>
<td>0.05</td>
</tr>
<tr>
<td>Joint plans recomposition</td>
<td>0.05</td>
</tr>
<tr>
<td>Time mutation</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Mode Evolution, Own Car
Mode Evolution, Limited Car, No Coordination
Mode Evolution, Limited Car, Coordination
Introduction

Agent’s Coordination in MATSim

Performance

Conclusions
Conclusions

▶ motivations:
 ▶ coordination of individuals is an important behavior
 ▶ most travel forecasting models/simulation tools are individual based

▶ performance of the approach:
 ▶ behaves *quite* well for joint trips (*c.f.* paper)
 ▶ behaves *reasonably* well for shared vehicles
 ▶ group level plan selection can be very slow!

▶ demonstrated here on cliques, but more complex network structures are possible

▶ next steps:
 ▶ validation for intra-household ride-sharing (*requires calibrated scenario*)
 ▶ joint trips *and* limited vehicle resources
 ▶ joint activities
Questions?
Evolution of Joint Plans Size

![Graph showing the evolution of joint plans size over iterations.](image-url)
Example of Final Joint Plan Structure

<table>
<thead>
<tr>
<th>person-2880</th>
<th>person-2881</th>
<th>person-2882</th>
<th>person-2888</th>
<th>person-2883</th>
<th>person-2884</th>
<th>person-2885</th>
<th>person-2886</th>
<th>person-2887</th>
<th>person-2889</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>vehicle-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>vehicle-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vehicle-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Running Times

<table>
<thead>
<tr>
<th>Run</th>
<th>Total Dur. (min.)</th>
<th>Avg. Repl. Dur. (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Own Car</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>Lim. Car, No Coord.</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Lim. Car, Coord.</td>
<td>42</td>
<td>799</td>
</tr>
</tbody>
</table>
Final Mode Shares

<table>
<thead>
<tr>
<th>Mode</th>
<th>Mode Share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Own Car</td>
</tr>
<tr>
<td>Walk</td>
<td>3.71</td>
</tr>
<tr>
<td>Bike</td>
<td>3.85</td>
</tr>
<tr>
<td>Public Transport</td>
<td>3.51</td>
</tr>
<tr>
<td>Car</td>
<td>88.94</td>
</tr>
</tbody>
</table>