Familiar Strangers: Understanding metropolitan patterns of daily encounters

Lijun Sun^{1,2}, Kay W. Axhausen^{1,3}

¹Future Cities Laboratory, Singapore-ETH Centre ²Dept. of Civil Eng., NUS ³IVT, ETH Zurich lijun.sun@ivt.baug.ethz.ch June, 7, 2013, Copenhagen, NetSci2013

Sun Lijun, FCL-SEC

Familiar Strangers

Civil Engineering Student

What my friends thinks i do

What my mother thinks I do.

What society thinks I do.

What i think I do.

What i should really do.

What I actually do.

Outlier!

Sun Lijun, FCL-SEC

Familiar Strangers

Civil Engineering Student

What my friends thinks i do

What my mother thinks I do.

What society thinks I do.

What i think I do.

What i should really do.

social networks

What I actually do.

!Outlier

Sun Lijun, FCL-SEC

Familiar Strangers

Stanley Milgram

Familiar Strangers

Sun Lijun, FCL-SEC

Stanley Milgram

http://en.wikipedia.org/wiki/Stanley_Milgram

	Stanley Milgr
Born	August 15, 1933
	New York City
Died	December 20, 1
	Manhattan
Cause of	Heart failure ^[1]
death	
Education	Queens College
	(1954) M.A.
	Harvard Universi
Known for	Milgram experim
	Small world exp
	Familiar strange

Sun Lijun, FCL-SEC

Familiar Strangers

ram

- 1984 (aged 51)

- , New York
- ity (1960) Ph.D. nent
- eriment r

Stanley Milgram's experiment

Milgram, S. (1974) The frozen world of the familiar stranger. Psychology Today 17, 70-80.

Sun Lijun, FCL-SEC

Familiar Strangers

Stanley Milgram's experiment

19705 a train station

Milgram, S. (1974) The frozen world of the familiar stranger. Psychology Today 17, 70-80.

The frozen world

Sun Lijun, FCL-SEC

Familiar Strangers

of the familiar strangers

Stanley Milgram's experiment

- "Familiar strangers" are those who urbanites meet everyday in public settings, such as a subway station, and with whom they never speak or otherwise acknowledge the other's existence.
- Comfortable anonymity \bullet
- **Physical proximity**

Physical proximity (Except taking photos)

Cattuto C, et al. (2010) Dynamics of person-toperson interactions from distributed RFID sensor networks. PloS One 5(7):e11596. Stehlé J, et al. (2011) High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8):e23176.

Bluetooth RFID Wi-Fi

Active data collection

Isella L, et al. (2011) What's in a crowd? Analysis of face-toface behavioral networks. J Theor Biol 271(1):166-180.

Sun Lijun, FCL-SEC

Familiar Strangers

Physical proximity

Cattuto C, et al. (2010) Dynamics of person-toperson interactions from distributed RFID sensor networks. PloS One 5(7):e11596. Stehlé J, et al. (2011) High-resolution measurements of face-to-face contact patterns in a primary school. PloS one 6(8):e23176.

Limited in scale: schools, conferences, exhibitions...

Isella L, et al. (2011) What's in a crowd? Analysis of face-toface behavioral networks. J Theor Biol 271(1):166-180.

Sun Lijun, FCL-SEC

Familiar Strangers

- Think of data to capture physical proximity lacksquare
- Active data collection? lacksquare

Physical proximity $\leftarrow ---- \rightarrow$ Familiar strangers

Sun Lijun, FCL-SEC

Familiar Strangers

- Think of data to capture physical proximity •
- Active of a collection? •
- Large scale (city) •
- Accurate ${\color{black}\bullet}$
- Long time observation lacksquare

Physical proximity $\leftarrow ---- \rightarrow$ Familiar strangers

- Think of data to capture physical proximity
- Active ta collection?
- Large scale (city)
- Accurate
- Long time observation

- Public transit smart card!
- The EZ-link data in Singapore.

Sun Lijun, FCL-SEC

Familiar Strangers

Sun Lijun, FCL-SEC

Familiar Strangers

Sun Lijun, FCL-SEC

Familiar Strangers

Simple statistics

But this is not what we want

Sun Lijun, FCL-SEC

Familiar Strangers

Simple statistics

But this is not what we want

We want something complex

Like a network

Sun Lijun, FCL-SEC

Familiar Strangers

Sun Lijun, FCL-SEC

Familiar Strangers

physical proximity?

How do we convince you and ourselves?

• Why bus is a good proxy to capture physical proximity?

http://sgwiki.com/wiki/Buses

Sun Lijun, FCL-SEC

Familiar Strangers

Find "familiar strangers"

• Find "the others" you have encountered more than once.

- "Once" over the study period:
 - perfect stranger
- "More than once":
 - we assume he/she is a familiar stranger to you

Find "familiar strangers"

• Find "the others" you have encountered more than once.

- "Once" over the study period:
 - perfect stranger
- "More than once":
 - we assume he/she is a familiar stranger to you
- FSs are FSs
- What's the law behind?

Sun Lijun, FCL-SEC

Familiar Strangers

- Probability density $P(T_c, T_n)$ ${\color{black}\bullet}$
- 2d plot shows the density of the current and the next encounter

Familiar Strangers

- Probability density $P(T_c, T_n)$ •
- 2d plot shows the density of the current and the next encounter \bullet

Familiar Strangers

- Have to check
- Two dimensions:
 - Over day (merge t_c and t_n)
 - Collective regularity morning/afternoon
 - On the diagonal $(mod(t_c t_n, 24))$

June, 7, 2013

- Have to check
- Two dimensions:
 - Over day (merge t_c and t_n)
 - Collective regularity morning/afternoon
 - On the diagonal (mod $(t_c t_n, 24)$)
- Taken together, we find
- reproducible temporal patterns

June, 7, 2013

- Distributions of ...
- Duration of each encounter t_d
- Exponentially decaying tail
- Duration of $d(i,j) = \sum_{k=1}^{f_e(i,j)} t_{d,k}(i,j)$
- Sum of total duration between (i, j)

- Distributions of ...
- Duration of each encounter t_d
- Exponentially decaying tail
- Duration of $d(i,j) = \sum_{k=1}^{f_e(i,j)} t_{d,k}(i,j)$
- Sum of total duration between (i, j)
- Power-law tail
- Evidence of paired regularity
- Measurement?

Sun Lijun, FCL-SEC

- On individual level
- Number of familiar strangers: k_i
- Personal weight: $w_i \equiv \sum_{j \in N(i)} (f_e(i, j) 1)$

Sun Lijun, FCL-SEC

Familiar Strangers

 $k_i = 5$ $w_i = 8$

a

• On individual level

• Personal weight:
$$w_i \equiv \sum_{j \in N(i)} (f_e(i, j) - 1)$$

• Follows a power law with high cut-offs,

Familiar Strangers

• On individual level

• Personal weight:
$$w_i \equiv \sum_{j \in N(i)} (f_e(i, j) - 1)$$

- Follows a power law with high cut-offs,
- Great variation
- Encounter patterns might be influence by individual behavior patterns (regularity).

• Rescaled personal weight:

$$r_i = \frac{w_i}{T_i} \left(\text{hour}^{-1} \right)$$

How often do you recognize fss in one hour?

• Rescaled personal weight:

$$r_i = \frac{w_i}{T_i} \left(\text{hour}^{-1} \right)$$

How often do you recognize fss in one hour?

• Absolute trip difference:

$$m_i = \sum_{k=1}^2 \sum_{t \in S_k} rac{\left|t_j - \mu_k
ight|}{n}$$

How regular you are?

Sun Lijun, FCL-SEC

Familiar Strangers

• Rescaled personal weight:

$$r_i = \frac{w_i}{T_i} \left(\text{hour}^{-1} \right)$$

How often do you recognize fss in one hour?

• Absolute trip difference:

$$m_i = \sum_{k=1}^2 \sum_{t \in S_k} \frac{\left| t_j - \mu_k \right|}{n}$$

How regular you are?

Sun Lijun, FCL-SEC

Familiar Strangers

—[10,20) —[100,150) **—**[150,200)⁻ <u> [20,50)</u> 80 120 160 200 r (h⁻¹) 3000 4000 m (s)

- Individuals with higher r_i tend to have less skewed P(m)
- Those with lower r_i display a more skewed distribution

Familiar Strangers

—[10,20) **—**[100,150) <u> [20,50)</u> $-[150,200)^{-1}$ 80 120 160 200 r (h⁻¹) 3000 4000 m (s)

- Individuals with higher r_i tend to have less skewed P(m)
- Those with lower r_i display a more skewed distribution
- A larger encounter likelihood of an individual is strongly rooted in his/her behavioural regularity

—[10,20) **—**[100,150) <u> [20,50)</u> **—**[150,200)⁻ 80 120 160 200 $r(h^{-1})$ 3000 4000

• We all living in a world of familiar strangers

Sun Lijun, FCL-SEC

Familiar Strangers

June, 7, 2013

Monday

Sun Lijun, FCL-SEC

Familiar Strangers

June, 7, 2013

Tuesday

Sun Lijun, FCL-SEC

Familiar Strangers

Sun Lijun, FCL-SEC

Familiar Strangers

June, 7, 2013

Thursday

Sun Lijun, FCL-SEC

Familiar Strangers

June, 7, 2013

Friday

The frozen world

Familiar Strangers

Sun Lijun, FCL-SEC

of the familiar strangers

Mon-Fri

- A large social network over the population
- Diameter: 6
- Characteristic path length: 2.95
 - (random: 2.63)
- Average clustering coefficient: 0.19
 - (random: 4.5x10⁻⁴)
- Small-world
 - Watts DJ & Strogatz SH (1998) Collective dynamics of 'smallworld'networks. Nature 393:440-442.

Sun Lijun, FCL-SEC

Familiar Strangers

June, 7, 2013

- After all the stupid analysis
- Linking you with familiar strangers:

- Linking you with familiar strangers: lacksquare
- Stage 1: when geography allows people to be available to one another

Grannis, R. (2009). From the ground up: Translating geography into community through neighbor networks. Princeton University Press.

Sun Lijun, FCL-SEC

Familiar Strangers

- Linking you with familiar strangers:
- Stage 1: when geography allows people to be available to one another
- Stage 2: when people unintentionally encounter one another or engage in passive interactions

Grannis, R. (2009). From the ground up: Translating geography into community through neighbor networks. Princeton University Press.

Sun Lijun, FCL-SEC

Familiar Strangers

ne another er or engage in

- Linking you with familiar strangers: ${\color{black}\bullet}$
- Stage 1: when geography allows people to be available to one another
- Stage 2: when people unintentionally encounter one another or engage in passive interactions
- Stage 3: when people intentionally encounter and interact with one another

Grannis, R. (2009). From the ground up: Translating geography into community through neighbor networks. Princeton University Press.

- Linking you with familiar strangers: lacksquare
- Stage 1: when geography allows people to be available to one another
- Stage 2: when people unintentionally encounter one another or engage in passive interactions
- Stage 3: when people intentionally encounter and interact with one another
- Stage 4: when people engage in activities indicating mutual trust or a realization of shared norms and values

Grannis, R. (2009). From the ground up: Translating geography into community through neighbor networks. Princeton University Press.

• What will happen afterwards?

Familiar Strangers

• What will happen afterwards?

Sun Lijun, FCL-SEC

Familiar Strangers

Thank you!

Sun Lijun

Future Cities Laboratory, Singapore-ETH Centre Dept. of Civil Eng., National University of Singapore **lijun.sun@ivt.baug.ethz.ch https://sites.google.com/site/sunlijun1988/** June, 7, 2012, Copenhagen, NetSci2013

Appendix

• Why bus is a good proxy to capture physical proximity

Sun Lijun, FCL-SEC

Familiar Strangers

10⁻³ 10⁻⁴ 10⁻⁵ 10-6 10⁻⁷ 30 50 40 60 $f(week^{-1})$

Appendix

- $\tau = t_n t_c$: inter-encounter interval
- the time interval between successive encounters
- Prominent peaks at 24h, 48h, 72h, 96h
- 1d, 2d, 3d, 4d
- Decreasing pattern

Appendix

- As a result of various preference and constraints on individual behavior, • spatial-temporal patterns and collective regularity can be found in daily life, such as morning/evening peak in transportation, crowdedness in shopping malls and supermarkets at weekends and in restaurants at dinning time.
- Transit use is only one of these social activities with limited time allocation and specific locations.
- The physical proximity does not necessarily indicate a more intense social contact such as talking to each other, but implies diverse interactions, from not noticing each other, to fleeting eye contact and a close observation.
- How to measure the familiarity in the passive "FS" network and how to define the threshold of familiarity on social diffusion processes. (beyond this study and maybe future work)