Decision Support Tool to unlock the potential of large-scale agent-based transport demand simulation for planning practice

Alex Erath, Michael van Eggermond, Pieter Fourie, Artem Chakirov

EASTS Conference 2013
Taipeh, September 2013
Principles of agent-based transport modeling
Example of an agent’s daily activities and travel
Agent-based transport simulation for planning

Agent-based transport simulation for planning

Advantages

Full temporal dynamics
- Bunching phenomena
- Overcrowding of individual vehicles
- Time-dependent demand management

Agent-based paradigm
- Individuals
- Parcel or building (or unit) as base unit
- Interdependency of trips and activities, e.g. tour based mode choice

Challenges

How to deal with the wealth of data?
- Who?
- With how much time?
- What skills?
- New questions?
Current situation I

Network and moving vehicles

Highlight transport lines

Follow individual agents

Public transport demand analysis
Decision support system for transportation

Transport planners
• Effects of new bus services/network
• Impact of travel demand management schemes

Urban planners:
• Temporal patterns of buildings and neighbourhood
• Flow between public transport stops to surrounding buildings

Policy-makers
• Costs and benefits of a infrastructure measures?
• Who and where are the winners and losers?

Public transport operators
• Who profitable will a new line be?

Service industry
• Which customers are in catchment areas, separated by mode?
Requirements for DSS in transport planning

Functional:
- Appraisal
 - Cost-benefit
 - Winners and losers
- Scope
 - Journeys
 - Stages
 - Activities
- Temporal analysis
 - Full temporal resolution for filtering and aggregation

Technical:
- Database
 - Open source with open interface
 - Spatial queries
 - Flexible permission setting
- Front-end
 - Business analytics software for customisable and interactive analysis
 - GIS
General Framework
Case study: decision support tool for Singapore

Travel survey
- Re-coded into households, persons, trips, stages
- Survey database
 - Households
 - household_id
 - facility_id
 - income, car availability, etc.
 - Persons
 - person_id
 - household_id
 - income, tenure, etc.
 - Journeys
 - person_id
 - journey_id
 - mode, distance, duration, etc.
 - Stages
 - journey_id
 - stage_id
 - mode, distance, duration, etc.
 - Transfers
 - journey_id
 - transfer_id
 - waiting time, walk time, etc.
 - Activities
 - person_id
 - journey_id
 - activity_id
 - type, duration, timing, etc.

Spatial data
- Re-coded and deleted, retained
- Spatial database
 - Zones/aggregations
 - zone_id
 - area, name, other attributes.
 - Parcels
 - parcel_id
 - land use, area, etc.
 - Buildings/facilities
 - building_id
 - facility_id
 - mode id
 - activity capacity, dwelling types, number of units, etc.
 - Network links
 - link_id
 - land use, area, etc.
 - Transit stops
 - stop_id
 - travel, arrival, etc.
 - bus and rail stops

MATSim
- Converted into SQL records
- MATSim database
 - Households
 - household_id
 - facility_id
 - income, car availability, etc.
 - Persons
 - person_id
 - household_id
 - income, tenure, etc.
 - Journeys
 - person_id
 - journey_id
 - mode, distance, duration, etc.
 - Stages
 - journey_id
 - stage_id
 - mode, distance, duration, etc.
 - Transfers
 - journey_id
 - transfer_id
 - waiting time, walk time, etc.
 - Activities
 - person_id
 - journey_id
 - activity_id
 - type, duration, timing, etc.

Smart card
- Summarized as journeys, trips and transfers
- Transit smart card database
 - Persons
 - card_id
 - age, gender, home and work location
 - Journeys
 - journey_id
 - journey_id
 - mode, distance, duration, etc.
 - Stages
 - stage_id
 - activity_stop_id (bus & rail)
 - mode, distance, duration, etc.
 - Transfers
 - transfer_id
 - waiting time, walk time, etc.
 - Transit stops
 - card_id
 - transit_stop_id
 - total transfer time

SQL cross-joins and aggregations

Tableau visualization
Two case study applications

Comparison between modeled and actual travel demand patterns
- Data available from same data platform
- Public transport smart card transactions replicate level of disaggregation provided by agent-based transport simulation

Travel demand explorer
- Spatial selection
- Special focus
 - Mode share
 - Commuting trips
- Socio-demographics
Public transport trips data explorer
Travel demand explorer
Vision, Mission and Strategy

Vision
- Continuously updated data input
- Living (3d) city model to be maintain and shared data across stakeholders
- Automatic generation of MATSim ‘live’ scenarios

Mission:
- Developing the necessary tools to make MATSim more accessible for practitioners
- Engaging with practitioners in workshops to overlap of pressing needs with abilities new modelling technology offers

Strategy / Next steps
- Calibration and validation of MATSim Singapore with DSS
Connect and edit spatial database with Quantum GIS
Travel survey: reported vs MATSim routed

Travel Time

Travel Distance by Car

Main mode of travel
- Car Passenger
- Car Driver

Main mode of travel
- LRT
- Bus
- MRT

Invehicle distance by Public Transport

Distance under equilibrium conditions [m]

Distance for unloaded network [m]
Connect and edit spatial database with Quantum GIS
How do other disciplines deal with the problem?

1960: First Management Information Systems
 • Interactive analysis
 • Single decision maker

1970: Computer Based Systems to aid decision making
 • Databases and models
 • Financial planning

1980: Decision Support Systems (DSS)
 • Data -> Model -> management software for end user
 • Cognitive psychology and operations research join the club
How do other disciplines deal with the problem?

1990: Group decision support system
• Various stakeholders with different agendas

2000: Business intelligence
• Procter&Gamble links retail scanner data to DSS
• On-Line Analytical Processing (OLAP) for interactive analysis
• Linkage of various data sources, e.g. from different departments

2010: Visualisation
• Analyst circumvents data warehouse specialists
• External, interactive visualisation tools
• State-of-the–Arte visualisation principles