Ehreke, I. and C. Weis (2013) Determine VTTS for the German Federal Transport Infrastructure Planning, presentation at hEART 2013 - 2nd Symposium of the European Association for Research in Transportation, Stockholm, September 2013.

Determine VTTS for the German Federal Transport Infra-structure Planning

I. Ehreke C. Weis

IVT ETH Zürich

September 2013

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- 1. Background information
- 2. Study design
- 3. Response rate
- 4. Small travel time saving
- 5. Expert interviews
- 6. Outlook

Background information - BMVBS

Initiator:	Federal Ministry of Transport, Building and Urban Development (BMVBS)
Realisation:	IVT ETH Zurich Infratest TU Berlin, Dr. Stephane Hess
Duration:	January 2012 – Spring 2014
Aim:	cover non-commercial and commercial traffic
Sample:	about 3860 (nc) and 1200 (c) interviews
Secondary:	expert interviews, literature review

- CBA to analyze and validate the effects of transport policy measures and investments
- VTTS: large share of utility gains
 → correct economic evaluation essential
- determine VTTS and VOR for Germany's new Federal Transport Infrastructure Plan 2015

Study design - process

Situation 3

Zu Fuß	Zu Fuß Öffentlicher Verkehr			Auto				
Gehzeit 28:29 h		Gesamtzeit	3:09	h		Gesamtzeit	1:48	h
		davon Fahrtzeit	2:48	h		davon fahrend	1:21	h
		davon Wartezeit	0:07	h		davon im Stau	0:09	h
		davon Zugang	0:14	h		davon Zugang	0:18	h
		Umsteigen	4	Mal				
		Kosten	51.9	€		Kosten	51.6	€
		Fährt alle	5	min				
		Anteil verspätet	20	%		Anteil verspätet	5	%
Wahl:								

Study design – types non-commercial SPs

trip	reported mode	mode choice	route choice	reliability	long tern	n
average	walk	walk/put/mpt			WO	rkplace
	walk	walk/put/mpt			res	idential
	bike	bike/put/mpt			res	idential
	bike	bike/put/mpt			WO	rkplace
	put	bike/put/mpt		ρι	it 1 wo	rkplace
	put		put	ρι	it 2 res	idential
	mpt	walk/put/mpt		mp	ot 1 res	idential
	mpt		mpt	mp	ot 2 wo	rkplace
journey	put	bus/put/mpt		ρι	it 3 wo	rkplace
	put		put	ρι	ıt 1 res	idential
	mpt	bus/put/mpt		mp	ot 3 res	idential
	mpt		mpt	mp	ot 1 wo	rkplace
	put	put/mpt/plane		ρι	it 2 wo	rkplace
	put		put	ρι	it 3 res	idential
	mpt	put/mpt/plane		mp	ot 2 res	idential
	mpt		mpt	mp	ot 3 wo	rkplace
	plane	put/mpt/plane		plan	e 1 wo	rkplace
	plane	put/mpt/plane		plan	e 2 res	idential

Study design – types commercial SPs

trip	reported mode	mode choice	route choice	reliability
short	walk	walk/put/mpt		
	bike	bike/put/mpt		
	put	bike/put/mpt		put 1
	put		put	put 2
	mpt	walk/put/mpt		mpt 1
	mpt		mpt	mpt 2
medium	put	bus/put/mpt		put 3
	put		put	put 1
	mpt	bus/put/mpt		mpt 3
	mpt		mpt	mpt 1
long	put	put/mpt/plane		put 2
	put		put	put 3
	mpt	put/mpt/plane		mpt 2
	mpt		mpt	mpt 3
	plane	put/mpt/plane		plane 1
	plane			plane 2

attribute	characteristic
time main mode	-30%, -10%, +20% actual state
time walk	5%, 10%, 20% of travel time
congestion or waiting time	5%, 10%, 20% of travel time
cost	-20%, +10%, +30% actual state
change	-1, +/-0, +1 time
frequency	-1, +/-0, +1 step
share delayed	5%, 10%, 20%

Situation 3

Zu Fuß	Öffentlicher Verkehr		Auto)	
Gehzeit 28:29 h	Gesamtzeit	3:09 h	Gesamtzeit	1:48 h	
	davon Fahrtzeit	2:48 h	davon fahrend	1:21 h	
	davon Wartezeit	0:07 h	davon im Stau	0:09 h	
	davon Zugang	0:14 h	davon Zugang	0:18 h	
	Umsteigen	4 Mal			
	Kosten	51.9 €	Kosten	51.6 €	
	Fährt alle	5 min			
	Anteil verspätet	20 %	Anteil verspätet	5 %	
Wahl:					

Response rate

Ex-ante assessment of respondent burden [points]

Small travel time savings

- Utility gain clearly decreases if small travel savings are not taken into account
- Controverse discussion
- Different approaches suggest different treatments
- Serveral problems occure defining and distinguishing small
- \rightarrow Literature review in preparation of German VTTS study
- \rightarrow state of the art: treat all time savings equally.
- \rightarrow collected data would be sufficient if additional analysis desirable

- main mode car (80%)
- mobility concepts are optimized to time and cost
- about 20% of employees of a company are mobile and travel rather alone than in groups
- route choice is a free decision of the employee
- mode choice is a joint decision
- \rightarrow it is plausible to ask the employees

Outlook – trip distance

- Estimating discrete choice model
 - mode choice, route choice, combined
 - long term (residential and workplace)
 - non-linear effects (interaction between variables)
 - calculating VTTS and VOR
- synthesis, report and recommendations

Questions?