Integration of Optimal Charging Locations into a Transportation Energy Simulation Framework

Rashid A. Waraich

IVT
ETH
Zurich

September 2013
Motivation: Energy Demand Modeling

- Case studies integrated modeling of electricity demand and supply related to Evs
 - focus: electricity demand
- Often aggregated models used in this context
 - good for getting an overview of supply and demand
 - smart charging to balance demand and supply
- Disaggregated models needed for uncovering bottlenecks in the electricity network (e.g. power-line constraints and transformer overloads)
Motivation: Charging Infrastructure

- Framework for detailed electricity demand by EVs
- Does not consider specialized public charging infrastructure
Activity-based Modeling (Bottom-up)

- People
 - Need to perform activities (spatially separated)
 - Travel

- Derived demand
 - Other resource demands (food, water, waste, etc.)
 - Energy demand at buildings (heating, cooling, electricity, etc.)
 - Energy demand, e.g. EVs, PHEVs, CVs

- Scenario-specific
 - Energy Storage System
 - Charging Schemes
 - Controls of electric vehicles
 - Distributed Energy Generation (including home)
 - Vehicle-to-grid
 - Charging Infrastructure
MATSim

- Synthetic population: people -> agents
- Individual preferences (based on survey data)
- Optimization of activity and travel demand for whole day
- Initial plans based on census data/travel diaries
- Plans contain activities (work, shopping, education) and trips
- Several transport modes available (car, walk, public transport and bike)
- First step of optimization: simulation
Simulation
MATSim

- simulated plans are scored
- Lower travel time and performing activities gives better score
- The goal of each agent is to maximize its score
- Iterative process, based on idea of evolutionary algorithm
- Replanning (change travel mode, route, times, etc.)
- Co-existence of several plans
 - Bad plans deleted over time, good plans have higher chance of getting selected for execution -> survival of the fittest
 - Iteration continues -> optimal plans (Nash Equilibrium)
Transportation Energy Simulation Framework (TESF)

- Framework for simulation of EVs
- Extended MATSim with models for EVs
- Framework: basic implementations provided
- open source: www.tesfw.org (planned end 2013)
Uncovering Bottlenecks in the Grid

- Mostly used in interdisciplinary context
Electricity Network Resource Utilization (Zurich)
How to introduce public charging stations?

• Charging at private and public parking already modeled
• For charging at fuel stations, we need to model
 • when do people charge (early/late)
 • based on previous/new survey data
 • change route for getting to charging station
• Optimal location of charging infrastructure
 • Not new problem
 • Optimization considering various constraints and objective functions
Optimal Public Charging Location

- Initial deployment of charging infrastructure, e.g. based on separate MATSim run
- Perform electric vehicle simulation for one day with extended behaviour models for public charging infrastructure use (MATSim-TESF)
- Outputs: el. demand, charging infr. demand, grid constraints
- Perform optimal placement of charging infrastructure (repeat until no grid violations)
- Useful for simulating scenarios
What is Missing?

• Real systems develop inclemently
• Influence of charging infrastructure development and EV/PHEV vehicle fleet adoption on each other
• Charging infrastructure in competition
• EVs and PHEVs in competition for market share
• Interested in impact of policies => various stakeholders
Example other Stakeholders

- Government policy, equip parking with charging infrastructure (e.g. 5% per year)
 - No additional fee for charging
 - Perhaps higher fee for non-EVs parking
 - Promotion of electric vehicles
- Private companies investing in infrastructure are in competition with private home/work and public parking charging infrastructure
 - Help with introduction of EVs
 - Risk of getting wiped out
- Not only model scenarios, which are based on fixed assumptions and then performs optimization
- Allow more degrees of freedom, in order to see how the system could evolve
 - Possibly uncovering «hidden» implication of policies and interaction of subsystems
System Evolution

- Allow to perform more changes than only charging infrastructure
 - vehicle fleet
 - policy, pricing
 - charging infrastructure (gov, companyies, individuals)
 - power system infrastructure (PVs, grid updates)
=> not fixed any more
Output:
Development of utilization of
- charging infrastructure
- penetration of EVs/PHEVs
Conclusions and Future Work

- Move beyond optimizations where most parts of the scenario are fixed (based on assumptions)
- Look at system evolution and interactions of subsystems
 - Uncover «hidden» implication of developments and policies
- Still work in progress: Concepts need to be worked out before implementation into framework
Questions?