Carsharing: Why to model carsharing demand and how

F. Ciari
Outline

1. Introduction: What’s going on in the carsharing world?
2. Why to model carsharing demand?
3. Modeling carsharing with MATSim
4. Summary and future work
1. Introduction: What’s going on in the carsharing world?
2. Why to model carsharing demand?
3. Modeling carsharing with MATSim
4. Summary and future work
Worldwide growth of carsharing

Carsharing in terms of members / vehicles is growing fast

Source: Shaheen and Cohen, 2012
Actors

- The actors involved are increasingly large
 - Car manufacturers → Daimler, BMW, Pegeout
 - Traditional car rental companies → Avis, Sixth
 - Public transport operators → DB
Competition

• The level of competition on the market is increasing

 • At the start of modern carsharing operations (90’s Switzerland and Germany) and until recently, operators mostly were “local monopolists”

 • Now many cities boast several carsharing operators
The world of shared mobility is **evolving fast** and **new services** are coming to the market to **challenge/complement** the **old ones**

- Round trip-based carsharing (Mobility)
- One-way (station based) carsharing (Autolib)
- Free-floating carsharing (Car2go, DriveNow)
- Peer-to-peer carsharing (RelayRides)

- Bike-sharing
- Carpooling
- Dynamic ride sharing
- Slugging
- ...
1. Introduction: What’s going on in the carsharing world?
2. Why to model carsharing demand?
3. Modeling carsharing with MATSim
4. Summary and future work
Why do we need to model carsharing demand?

Models are used to get insight on the behavior of a transportation system under given circumstances

but

Is carsharing relevant?
Because...

- Still small but conceptually "mainstream" ("Shared economy")
- Fits well with some **societal developments** ("Peak car")
- Is often mentioned when it comes to make transport more **sustainable** (but the mechanisms aren’t clear)
...and also because...

- The **actors** involved are increasingly **large** → Able to have a “big bang” approach, implies **large investments**

- The level of **competition** on the market is increasing → **Higher investment risk**

- The world of shared mobility is **evolving fast** → Incertitude about **integration/competition** among different modes/systems
Research Goal

• Build a **predictive** and **policy sensitive model** that can be used by **practitioners (operators)** and **policy makers**
Methodology: Observations

- Inherent **limitations** of **traditional models** representing carsharing – the importance of CS **availability** at **precise points** in **time** and **space** is not fitting with vehicles per hour flows.

- **Travel** is the result of the **individual need** performing out-of-home **activities** at different locations – this matters for carsharing even more than for other modes! (according to the length / location of the activities)
1. Introduction: What’s going on in the carsharing world?
2. Why to model carsharing demand?
3. **Modeling carsharing with MATSim**
4. Summary and future work
MATSim

It sketches **individuals’ daily life** using the agent paradigm.

Agents have **personal attributes** (age, gender, employment, etc.) which influence their behavior.

Agents **autonomously** try to **carry out a daily plan** being able to **modify** some dimensions of their **travel** (time, mode, route, activity location)

High **temporal** and **spatial resolution**

MATSim = Multi-agent transport simulation (www.matsim.org)
Carsharing model in MATSim – Current status

• Traditional carsharing + Free-floating (by senozon)

 • Agents always walk from the starting facility to the closest car

 • Time and distance dependent fare

 • Stations are located at the actual carsharing locations in the modeled area

 • Carsharing is available only to members

 • Actual vehicle availability is accounted for
Test Case 1 - Berlin

Part of a German project called “Berlin elektroMobil” → Berlin, Germany as a test case

Goals:

• Understand the behavior of the whole transportation system under different carsharing scenarios

• Finding strategies to extend the carsharing supply in Berlin and get hints on how to combine free-floating (FF) and station-based (SB) carsharing
Scenarios

- Scenario I: SBCS (Basis, station based only, reflecting actual supply)

- Scenario II: Expanded SBCS (Station based only, additional stations and members)

- Scenario III: Scenario II + Free-floating

<table>
<thead>
<tr>
<th></th>
<th>Scenario I</th>
<th>Scenario II</th>
<th>Scenario III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>4’422‘012</td>
<td>4’506‘058</td>
<td>4’506‘058</td>
</tr>
<tr>
<td># Members CS SB & FF</td>
<td>20‘000</td>
<td>38‘000</td>
<td>38‘000</td>
</tr>
<tr>
<td># Members CSFF</td>
<td>-</td>
<td>-</td>
<td>194‘000</td>
</tr>
<tr>
<td># CS Stations</td>
<td>82</td>
<td>152</td>
<td>152</td>
</tr>
<tr>
<td># Vehicles (Station based)</td>
<td>175</td>
<td>329</td>
<td>329</td>
</tr>
<tr>
<td># Vehicles Free-floating</td>
<td>-</td>
<td>-</td>
<td>2‘500</td>
</tr>
<tr>
<td># Members traveling (any mode)</td>
<td>16‘489</td>
<td>31‘358</td>
<td>191‘819</td>
</tr>
</tbody>
</table>
Statistics overview

<table>
<thead>
<tr>
<th></th>
<th>CS SB (Scenario I)</th>
<th>CS SB (Scenario II)</th>
<th>CS SB (Scenario III)</th>
<th>CS FF (Scenario III)</th>
</tr>
</thead>
<tbody>
<tr>
<td># Trips</td>
<td>496</td>
<td>1'298</td>
<td>1'379</td>
<td>10'708</td>
</tr>
<tr>
<td>Avg. Trip Duration [min]</td>
<td>22.9</td>
<td>23.5</td>
<td>27.5</td>
<td>20.1</td>
</tr>
<tr>
<td>Avg. OD-Distance [km]</td>
<td>5.8</td>
<td>5.3</td>
<td>5.3</td>
<td>5.7</td>
</tr>
<tr>
<td>Total travel time [Days]</td>
<td>7.9</td>
<td>21.2</td>
<td>26.5</td>
<td>149.8</td>
</tr>
<tr>
<td>Total distance [km]</td>
<td>2'900</td>
<td>6'900</td>
<td>7'300</td>
<td>60'600</td>
</tr>
</tbody>
</table>

- **Over-proportional increase** of SB rentals (increasing stations / cars)
- **Trips** (distance and travel time) essentially **unchanged**
- Adding FFCS (2’500 cars) → ~ 10’000 additional trips and SBCS grows
- **SB** (S III) **shorter** trips (distance), **FF** slightly **longer but faster** trips.
Purpose

FF CS has **more Work** and **less Leisure** travel compared to **SB CS**
Modal substitution

Mode substituted by free-floating carsharing

- **Car travel** is the mode which is *reduced the most* (> 30%) of the free-floating trips were car trips before its introduction.

- Overall **car travel** (VMT) *grows* with FF compared to SB only → **modal substitution** patterns for free-floating carsharing might be problematic.

- Relatively **few agents changed from SB to FF carsharing**
Conclusions

• **Untapped potential for SBCS** in Berlin – **Over-proportional growth** of SB doubling # carsharing cars

• **SB** carsharing is **used more intensively** after **FF** carsharing is introduced

• Some **differences** in the **use** of the two CS modes (**purpose**, **time**, **distance**)

• **Substitution patterns** are a possible **concern** for **FF**

• Apparently **FF** and **SB** are rather **complementary**
Test Case 2 - Zürich

Goals:

• Understand the behavior of the whole carsharing system under different (carsharing) pricing scenarios

• Get hints on the interactions between traditional station based carsharing and free-floating carsharing under such scenarios
Scenarios

<table>
<thead>
<tr>
<th></th>
<th>Scenario I</th>
<th>Scenario II</th>
<th>Scenario III</th>
<th>Scenario IV</th>
<th>Scenario V</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB Time Fee</td>
<td>4.52 SFr./h</td>
<td>4.52 SFr./h</td>
<td>4.52 SFr./h</td>
<td>4.52 SFr./h</td>
<td>4.52 SFr./h</td>
</tr>
<tr>
<td>SB Distance Fee</td>
<td>0.18 SFr./Km</td>
<td>0.18 SFr./Km</td>
<td>0.18 SFr./Km</td>
<td>0.18 SFr./Km</td>
<td>0.18 SFr./Km</td>
</tr>
<tr>
<td>FF Time Fee</td>
<td>-</td>
<td>0.237 SFr./min</td>
<td>0.118 SFr./min</td>
<td>0.118 SFr/min (10-16) 0.237 SFr/min (rest of day)</td>
<td>0.237 SFr./min</td>
</tr>
<tr>
<td>FF Distance Fee</td>
<td>-</td>
<td>0.29 SFr./Km</td>
<td>0.29 SFr./Km</td>
<td>0.29 SFr./Km</td>
<td>0.29 SFr./Km</td>
</tr>
<tr>
<td>FF Free Distance</td>
<td>-</td>
<td>20 Km</td>
<td>20 Km</td>
<td>20 Km</td>
<td>0 Km</td>
</tr>
</tbody>
</table>
Vehicles in Motion

Scenario I

Scenario II

Scenario III

Scenario IV

Scenario V
Modal substitution

Modes substituted by free-floating carsharing in scenarios II to V as compared to scenario I. The secondary axis shows the number of free-floating rentals for the scenario.
Rentals spatial patterns
Purpose of the rental

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Scenario I</th>
<th>Scenario II</th>
<th>Scenario III</th>
<th>Scenario IV</th>
<th>Scenario V</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT CS</td>
<td>1h23’9”</td>
<td>1h39’7”</td>
<td>1h44’7”</td>
<td>1h24’28”</td>
<td>1h26’29”</td>
</tr>
<tr>
<td>FF CS</td>
<td>-</td>
<td>2h45’58”</td>
<td>2h16’56”</td>
<td>2h34’38”</td>
<td>2h12’45”</td>
</tr>
<tr>
<td>Car</td>
<td>3h58’2”</td>
<td>3h58’14”</td>
<td>3h58’</td>
<td>3h57’53”</td>
<td>3h57’47”</td>
</tr>
</tbody>
</table>
Conclusions

- The impact of different pricing schemes is not limited to increasing or reducing the aggregate level of usage.

- Pricing strategy structurally affects the interactions between the two carsharing types.

- Complex interactions between spatiotemporal availability of carsharing vehicles and users are observed.

- The realism of some aspects (i.e. purpose, modal substitution) is still unclear.
1. Introduction: What’s going on in the carsharing world?
2. Why to model carsharing demand?
3. Modeling carsharing with MATSim
4. Summary and future work
Summary

• **Carsharing** is growing fast and is becoming «mainstream»

• Instruments for the **modeling of carsharing** are becoming necessary

• **Traditional models** are **not** well suited to model carsharing

• **MATSim** is already able to **simulate carsharing** and to evaluate complex scenarios...

 ...but there are still **many limitations**
Ongoing work

• Improving the existing membership model

• Testing our implementations of free-floating and one-way carsharing
Future work

- **Further validation** of the existing results with *empirical data*
- Applying the tool for analysis on *new scenarios*, possibly relying on *new empirical data*
- Improve the simulation with *better behavioral models*
- New case studies where different *shared mobility options* (Autonomous Vehicles, Ride Sharing) are combined
Thank you for your attention!

www.matsim.org