Travel Model of Future

Demonstration of Integrated Dynamic Policy Sensitive Model of Travel Demand for the Mega-Region of New York
Workshop Outline

- Dr. Peter Vovsha
 - Integration of advanced models of travel demand and network simulations as the main avenue in our profession

- Prof. Kay Ahxausen
 - MatSim platform and applications in Europe

- Dr. Michael Balmer
 - New York ABM – MatSim integration demonstration
Integrated Regional Travel Model

- Demand Model (4-step or ABM)
- Network simulations (UE or DTA)
“Putting a box around it, I’m afraid, does not make it a unified theory.”
Two Generations of Travel Demand Models

- 1st generation: aggregate, trip-based, so-called 4-step models:
 - In practice since 1970th
 - Still widely applied in the US, especially by smaller MPOs and transit agencies

- 2nd generation: disaggregate, tour-based, so-called Activity-Based Models (ABMs):
 - In practice since early 2000th
 - Prevailing practice for major MPOs in US
Two Generations of Regional Network Simulation Models

- **1st generation**: aggregate user equilibrium static assignments of traffic flows:
 - Based in pioneering work of Wardrop, 1952 and Beckman, 1956
 - In practice since 1970th as part of 4-step
 - Still widely applied in the US

- **2nd generation**: Dynamic Traffic Assignment (DTA) with individual-vehicle microsimulation:
 - Equilibrium formulation based in intensive research since 1990th
 - In practice since early 2000th for corridor-level studies
 - Individual vehicle microsimulation techniques borrowed from traffic microsimulation models
 - Meso-level techniques emerged from 2000th
4 Major Options

<table>
<thead>
<tr>
<th>Demand Model</th>
<th>UE</th>
<th>DTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Step</td>
<td>1=Conventional well-explored</td>
<td>3=Usual for DTA in practice (demand is stretched)</td>
</tr>
<tr>
<td>ABM</td>
<td>2=Usual for ABM in practice (UE is stretched)</td>
<td>4=Most promising avenue (first attempts)</td>
</tr>
</tbody>
</table>
CONVENTIONAL INTEGRATION
SCHEMA 4-STEP WITH UE
Fundamentals – Origins

UE – Beckmann, 1956

$$\min_{\{x_{ijr}\}} \left\{ \sum_{a}^{v_{a}} \int_{0}^{c_{a}(w)} dw \right\}$$

Subject to:

$$\sum_{r} x_{ijr} = d_{ij}$$

$$v_{a} = \sum_{ijr} \delta_{ar} x_{ijr}$$

$$x_{ijr} \geq 0$$

Solution:

$$x_{ijr} \left(c_{ijr} - \min_{r} c_{ijr} \right) = 0$$

Entropy max – Wilson, 1967

$$\max_{\{y_{ij}\}} \left\{ - \sum_{ij} y_{ij} \ln y_{ij} \right\}$$

Subject to:

$$\sum_{j} y_{ij} = P_{i} \quad \sum_{i} y_{ij} = A_{j}$$

$$\sum_{ij} c_{ij} y_{ij} = C$$

$$y_{ij} > 0$$

Solution:

$$y_{ij} = P_{i} \alpha_{i} A_{j} \beta_{j} \exp\left(-\theta c_{ij}\right)$$

\(a=\text{links, } i=\text{origins, } j=\text{destinations, } r=\text{routes}\)
Combined UE & Trip Distribution, Evans, 1976

\[
\min_{\{x_{ijr}\}} \left\{ \sum_{a} v_a^a c_a(w) dw + \frac{1}{\theta} \sum_{ij} y_{ij} \ln y_{ij} \right\}
\]

Subject to:

\[
\sum_{r} x_{ijr} = y_{ij}
\]

\[
v_a = \sum_{ijr} \delta_{ar} x_{ijr}
\]

\[
x_{ijr} \geq 0
\]

Solution:

\[
x_{ijr} \left(c_{ijr} - \min_{r} c_{ijr} \right) = 0
\]

\[
y_{ij} = P_i \alpha_i A_j \beta_j \exp\left(-\theta \min_{r} c_{ijr} \right)
\]
Combined UE & Mode Choice, Florian et al, 1977

\[
\begin{align*}
\min_{\{x_{ijmr}\}} \left\{ \sum_{am} v_{am} \int c_{am}(w) dw + \frac{1}{\theta} \sum_{ijm} y_{ijm} \ln y_{ijm} - \gamma_m \right\} \\
\sum_{r} x_{ijmr} = y_{ijm} \\
v_{am} = \sum_{ijr} \delta_{amr} x_{ijmr} \\
x_{ijmr} \geq 0
\end{align*}
\]

Subject to:
\[
\sum_{m} y_{ijm} = d_{ij}
\]

Solution:
\[
y_{ijm} = d_{ij} \frac{\exp \left(\gamma_m - \theta \min_{r} c_{ijmr} \right)}{\sum_{n} \exp \left(\gamma_n - \theta \min_{r} c_{ijnr} \right)}
\]
Actual Implementation

4-step demand model

Trip tables

Static assignment

LOS skims for all possible trips
Conclusions on Integration of 4-Step and UE

- What do modelers want?
 - Large regional networks w/high level of spatial resolution (4,000-5,000 zones and even more)
 - Numerous travel and population segments for better representation of behavior (purpose, income, gender, etc)
- Dead-end technology:
 - Both 4-step and UE are inherently limited
 - Integration is hampered by incompatible segmentation
4-STEP INTEGRATED WITH DTA
Incompatible Temporal Resolution

- 4-step operates with broad time-of-day periods and fractional trips
- DTA requires finer demand slices (15 min) and discrete trips
- Split factors are applied (developed from household survey or traffic counts) with subsequent rounding up the number of trips
Slicing & Integerizing Trip Tables

6:00am – 9:00am

6:00am – 6:15am

0.5 1.6
0.1 2.8

6:15am – 6:30am

1.5 1.6
0.1 3.2

8:45am – 9:00am

0.5 1.6
0.1 2.4

PB, New York, NY, May 22, 2014
“Massaging” Trip Tables

- Trip tables from 4-step model after slicing and integerizing do not replicate traffic counts with fine temporal resolution.
- Matrix adjustment is common practice to match link & turn counts.
- Static & dynamic matrix adjustment algorithms are improving.
Matrix Adjustment Methods

- Start with seed matrix (daily, period-specific, hour-specific)
- Define targets to match and closeness function:
 - Link & turn counts (total or by vehicle class; daily, period-specific, hourly)
- Define structural preservation criteria:
 - Preserve trip distribution (daily, period, hour)
 - TAZ-to-TAZ
 - District-to-district
 - Preserve marginals (daily, period, hour)
 - Preserve TLD (daily, period, hour)
- Form optimization program and find a solution (or step towards optimum)
- Equilibrate optimization with assignment
Limited Value of Trip Table Adjustment

- This is a short term solution for certain projects (highway operations) when demand can be considered fixed
- Problematic for long-term planning studies:
 - How adjustments could be carried over into future?
 - Replace demand model with simple trip table factoring?
 - Feedback?

4-step → Sliced trip tables → Adjusted trip tables → DTA
Equilibration is Essential for Long-Term Studies

- Future demand growth can exceed highway capacity:
 - UE allows for V/C > 1
 - DTA with unrealistic demand would not work
- Equilibration can solve this problem:
 - Only if elastic trip generation and time-of-day choice models are applied (problematic with 4-step)
 - Trip distribution and mode choice may not be enough
Conclusions on Integration of 4-Step and DTA

- DTA is used as complementary tool for certain studies most frequently short-term
- 4-step is equilibrated with UE and then trip tables are additionally adjusted for DTA
- No promising avenue for 4-step & DTA integration and equilibration:
 - Inherent limitations of 4-step w.r.t. temporal resolution and time-of-day choice
 - Feedback from DTA to 4-step is not clear
ACTIVITY-BASED MODELS OF TRAVEL DEMAND
Standard Features of ABMs in Practice in US, 2001-2014

<table>
<thead>
<tr>
<th>Feature</th>
<th>ABM</th>
<th>4-Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main unit of travel</td>
<td>Tour (closed chain of trips)</td>
<td>Trip</td>
</tr>
<tr>
<td>Structural objects for modeling</td>
<td>Individual microsimulation of persons and households</td>
<td>Aggregate zone-to-zone flows (trip tables)</td>
</tr>
<tr>
<td>Travel generation mechanism</td>
<td>Derived from participation in activities</td>
<td>Attributed to population a priori</td>
</tr>
</tbody>
</table>
Daily activity patterns have related travel patterns, which are expressed as tours (account for entire daily activity chain).
ABM: Tours and Trips

Data View:

<table>
<thead>
<tr>
<th>HH #</th>
<th>Per #</th>
<th>Tour #</th>
<th>Purp</th>
<th>Origin TAZ</th>
<th>Destin. TAZ</th>
<th>Outbound Stop1 TAZ</th>
<th>Return Stop1 TAZ</th>
<th>Mode</th>
<th>Sub-tour</th>
<th>Sub-Tour Destin.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1023</td>
<td>1</td>
<td>1</td>
<td>Work</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>Transit</td>
<td>Yes</td>
<td>4</td>
</tr>
</tbody>
</table>
Tour Mode Consistency

Work Tour

Zone 1

Zone 2

Zone 3

Work-Based Tour

Zone 4

Bus to Work = Drive alone not available for lunch
ABM Basics: Microsimulation

- Synthetic population is created that represents the actual population
- Travel is explicitly modeled for each person/household
- Monte Carlo simulation is used instead of fractional probability aggregation: discrete choices made for each traveler
- Model outcome looks like a large HH survey
- Results are aggregated and:
 - Assigned to transport networks
 - Compiled into reports
Fractional Probability

Tour

- Destination 1 (0.15)
 - Mode 1 (0.05)
 - Mode 2 (0.03)
 - Mode 3 (0.07)

- Destination 2 (0.75)
 - Mode 1 (0.15)
 - Mode 2 (0.25)
 - Mode 3 (0.35)

- Destination 3 (0.10)
 - Mode 1 (0.05)
 - Mode 2 (0.02)
 - Mode 3 (0.03)
Microsimulation

Tour

- Destination 1 (0.15)
 - Mode 1 (0.15)
 - Mode 2 (0.25)
 - Mode 3

- Destination 2

- Destination 3 (0.10)
Individual Parameter Variation

- IPV technique was successfully used for probabilistic VOT (SFCTA, CMAP), propensity to walk (CMAP), license plate rationing (NY).
- IPV can be used in a similar way for all types of payment media and individual discounts.
- IPV requires a microsimulation framework; it should also be applied for network simulations.
VOT Distribution (SFCTA ABM)

- Income $0-30k (Mean: $6.01)
- Income $30-60k (Mean: $8.81)
- Income $60-100k (Mean: $10.44)
- Income $100k+ (Mean: $12.86)
Temporal resolution and time-use constitute clear advantages of ABM:
- Activity participation requires time
- Every person has 24 hours a day

Temporal resolution is essential for:
- Addressing policies like congestion pricing
- Integration with advanced network simulation models

Examples of ABM time-use follow:
Tour TOD choice

Work tour to schedule
Tour TOD choice

Work tour to schedule

Considerations for departure time:
• Office hours (7-10)
• Avoid congestion (10+)
• Give ride to child (7)
Tour TOD choice

Work tour
Tour TOD choice

Considerations for arrival time:
- Office hours (≤ 20)
- Avoid congestion (< 16)
- Tennis before dark (< 17)
Tour TOD choice

Considerations for duration:
- 8 work hours
- Finish presentation for workshop

Work tour

5 10 15 23
Time-Use Concept: Sequential Processing of Tours

1-Work
2-Discretionary joint
3-Shopping individual
Time-Use Concept: Sequential Processing of Tours

1-Work
7-17

2-Discretionary joint

3-Shopping individual
Time-Use Concept: Sequential Processing of Tours

1-Work
7-17

2-Discret
20-23

3-Shopping individual
Time-Use Concept: Sequential Processing of Tours

- 1-Work: 7-17
- 3-Sh: 18-19
- 2-Discret: 20-23
Persons By TAZ and Hour (Daytime Population, Atlanta, ARC ABM)
Completed ABMs in the United States in Practice

- Seattle
- San Francisco
- Sacramento
- Lake Tahoe
- San Diego
- Bay Area
- Portland
- Oregon
- Chicago
- Miami
- Atlanta
- Columbus
- Denver
- Atlanta

Legend:
- Developed by PB
- Developed by others
- CT-RAMP Family
NY Model Area: 28 Counties

- 20,000,000 population
- 100 population segments
- 4,000 TAZs
- 4 time-of-day periods
- 6 travel purposes
- 10 motorized modes
- 4 macro / 11 area types
Chicago (CMAP) Region

- Population: 10.5 million

- Modeling Region
 - 21 counties in 3 states
 - Neighboring MPOs
 - SE Wisconsin
 - NW Indiana
 - 1,944 TAZs

- Road Network
 - 15.0K nodes
 - 44.3K links

- Rail Network
 - 6.6K nodes
 - 19.5K links
Income distribution of users of ML and GPL

Income of express lane vs. general purpose lane users, annual household income, in thousands of dollars

Legend

<table>
<thead>
<tr>
<th>25TH PERCENTILE</th>
<th>MEDIAN</th>
<th>75TH PERCENTILE</th>
<th>95TH PERCENTILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5TH PERCENTILE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- I-290 EXPRESS
- I-290 GENERAL PURPOSE
- I-55 EXPRESS
- I-55 GENERAL PURPOSE
- I-90 EXPRESS
- I-90 GENERAL PURPOSE

Source: CMAP analysis.
CT-RAMP Family of ABMs Developed by PB SAG

- Coordinated Travel Regional Activity-based Modeling Platform

Main features:
- Explicit intra-household interactions and Coordinated DAP (CDAP)
- Continuous temporal dimension
- Integration of activity generation, location, and TOD sub-models
- Sensitive to a wide range of socio-economic variables, transportation costs/accessibilities, and land-use changes
- JAVA-based package for ABM construction
Members of CT-RAMP Family

- **1st generation:**
 - Columbus, OH (MORPC) – in practice since 2004
 - Lake Tahoe, NV (TMPO) – in practice since 2006
 - Atlanta, GA (ARC) – in practice since 2009
 - San-Francisco Bay Area, CA (MTC) – in practice since 2010

- **2nd generation:**
 - Chicago, IL (CMAP) – in practice since 2011
 - San-Diego, CA (SANDAG) – in practice since 2012
 - Miami, Fl (SERPM) – in practice since 2012

- **3rd generation:**
 - Phoenix/Tucson, AZ (MAG) – started in 2010
 - Jerusalem, Israel (JTMT) – started in 2011
 - Ohio 3C Project – started in 2013:
 - Columbus (MORPC)
 - Cleveland (NOACA)
 - Cincinnati (OKI)
 - LA, CA (SCAG) – started in 2013 (Hybrid of CT-RAMP and MDCEV)
 - Nashville, TN (NMPO) – started in 2013 (PopSyn)
ADVANCED ABM
INTEGRATED WITH UE
What is Different with ABM?

- Complicated chains of choices with structural changes in the list of agents instead of predetermined matrix of choices pertinent to 4-step
- Entropy-maximizing formulation for demand terms is theoretically possible but impractical because of dimensionality
- Microsimulation of crisp choices instead of fractional probabilities
Practical Methods: Enforcement & Averaging

- Simple feeding back LOS variables does not ensure convergence
- 2 ways to ensure convergence by iterating:
 - Enforcement to ensure replication of “crisp” individual choices:
 - Theoretical foundation
 - Empirical strategies
 - Averaging:
 - Continuous LOS variables (skims)
 - Link volumes (before skimming)
 - Trip tables
Enforcement Methods

- Re-using same random numbers / seeds:
 - Each household / person has a fixed seed
 - Structural stability of decision chains by reserving choice placeholders

- Gradual freezing of travel choices:
 - Subsets of households
 - Travel dimensions

- Analytical discretizing of probability matrices:
 - Avoiding Monte-Carlo (no random numbers!)
Averaging Methods (NY BPM)

- Microsimulation model
- Mode & TOD trip tables
- Conventional static assignment
- Link volumes
- Link times
- OD skims

PB, New York, NY, May 22, 2014
New Challenge – Continuously Distributed VOT: Chicago Pricing

ABM

- Basic VOT estimated for each travel purpose and person type
- Situational variation of VOT applied for each person based on lognormal distribution – essential for pricing studies
- Car occupancy accounted by cost sharing:
 - VOT for HOV2 is 1.6 of highest participant VOT
 - VOT for HOV3+ is 2.3 of highest participant VOT
- For static assignments VOT has to be aggregated across individuals into discrete vehicle classes
Resulted Classes for Assignment

<table>
<thead>
<tr>
<th>Vehicle type & VOT</th>
<th>Non-toll SOV</th>
<th>Non-toll HOV2</th>
<th>Non-toll HOV3+</th>
<th>Toll SOV</th>
<th>Toll HOV2</th>
<th>Toll HOV3+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto low</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Auto high</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Commercial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Light truck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Medium truck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Heavy truck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>External low</td>
<td>21</td>
<td>23</td>
<td>25</td>
<td>22</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>External high</td>
<td>27</td>
<td>29</td>
<td>31</td>
<td>28</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>Airport low</td>
<td>33</td>
<td>35</td>
<td>37</td>
<td>34</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>Airport high</td>
<td>39</td>
<td>41</td>
<td>43</td>
<td>40</td>
<td>42</td>
<td>44</td>
</tr>
</tbody>
</table>
Conclusions on Integration of ABM and UE

- Effective & efficient practical strategy:
 - MSA of link volumes and
 - MSA on trip tables
- Enforcement can be applied effectively
- Segmentation incompatibility is exacerbated due to continuous VOT and other individual variables of ABM:
 - Better network model is needed
ABM INTEGRATED WITH DTA
Integration Issue DTA-to-ABM

Microsimulation ABM

List of individual trips

Individual trajectories for the current list of trips

LOS for the other potential trips?

Microsimulation DTA
Possible Surrogate (SHRP 2 C10)

- Microsimulation ABM
- List of individual trips
- Microsimulation DTA
- Aggregate LOS skims for all possible trips

?
What’s wrong with feeding back aggregate LOS OD skims?

- Aggregate OD LOS skims is only a surrogate for consistent individual path LOS:
 - Back to 4-step resolution and aggregation biases
- Infeasible to support individual level of segmentation pertinent to ABM (“curse of dimensionality”):
 - VOT categories (7-8 at least)
 - Occupancy categories (3 at least)
 - Departure time bins (15 min at least)
- Behaviorally non-appealing:
 - No relation to actual individual experience, learning, or adaptation
2-Level Equilibration Schema
Developed by PB SAG

Temporal equilibrium to achieve individual schedule consistency

- Microsimulation ABM
- Sample of alternative origins, destinations, and departure times
- Individual trajectories for potential trips
- List of individual trips
- Consolidation of individual schedules (inner loop for departure / arrival time corrections)
- Individual trajectories for the current list of trips
- Microsimulation DTA
Schedule Consistency

<table>
<thead>
<tr>
<th>Activity $i=0$</th>
<th>Activity $i=1$</th>
<th>Activity $i=2$</th>
<th>Activity $i=3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip $i=1$</td>
<td>Trip $i=2$</td>
<td>Trip $i=3$</td>
<td></td>
</tr>
</tbody>
</table>

Travel T_i
Duration d_i
Arrival τ_i
Departure π_i

Schedule $\theta = \{\pi_i\}$
Schedule Adjustment

Find new schedule close to previous durations and departures

\[
\min \left\{ \sum_i \left(x_i \ln \frac{x_i}{d_i} + y_i \ln \frac{y_i}{\pi_i} \right) \right\}
\]

Daily consistency

\[
\sum_i (x_i + t_i) = 24
\]

Departure time

\[
y_i = \sum_{j \leq i} (x_j + t_j)
\]

Solution

\[
x_i = k \times d_i \times \prod_{j \geq 1} \frac{\pi_j}{y_j}
\]

Changed travel times
Agent vs. Simulated Individual

- **Intelligence:**
 - Active autonomous behavior and control
 - Knowledge-level interaction and behavior activation instead of method invocation
 - **Can change parameters and decision rules to achieve goals**

- **Constrained & dynamically updated information:**
 - Learn about environment and each other, form choice sets
 - Contagion, stigmergy, referencing, modality

- **Interact with each other and not with environment only:**
 - Emergent collective behavior (complex, non-linear, discontinuous)
 - Competition, bids, offers, negotiations instead of densities/logsums
 - **Cooperation, group decision-making, explicit intra-household and inter-household interactions**
Dynamic Choice Set

- In the focus of research on choices with large number of alternatives:
 - Location choices
 - Network route choice
- “Mental Maps” and gradual learning [Arentze & Timmermans, 2000-2013]:
 1. Start with limited choice set (can be a single alternative)
 2. Choose the best alternative
 3. Evaluate satisfaction level (not a standard RUM!)
 4. If not, add one more “probe” alternative to choice set, go to 2
Learning about Space from Individual Trajectories (Dynamic Choice Set)

- One implemented trip provides individual learning experience w.r.t. multiple destinations [Tian & Chiu, 2014]

Intermediate nodes visited on the way:
- Travel time and cost experienced
- Parking conditions may not
Sampling of Trip Destinations to Avoid Full Skim Proliferation

- (Standard) destinations are sampled in ABM for efficiency:
 - 30 out of 20,000 MAZ for each modeled tour & trip
 - Sampled randomly with importance (size variable and distance)
 - No memory, experience, or learning

- (Suggested) Intelligent dynamically updated choice set for each individual and activity:
 - Efficient accumulation of individual trajectories in microsimulation process
 - Behaviorally appealing
Dynamic Destination Choice Set

10 randomly sampled destinations for individual for activity

Add visited locations for individual with positive size variable for activity

Add 5 randomly sampled destinations

Drop locations from individual set for activity if exceeds 30

Crude skims

Actual choice

Simulated trajectory

Visited locations
LOS for Dynamically Updated Dest. Choice Set for Each Person & Activity

<table>
<thead>
<tr>
<th>Orig</th>
<th>Dest</th>
<th>Departure time 6:00-6:15</th>
<th>Departure time 6:15-6:30</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Experienced trajectory time</td>
<td>Experienced trajectory cost</td>
</tr>
<tr>
<td>Home</td>
<td>1001</td>
<td>10 min</td>
<td>0 cents</td>
</tr>
<tr>
<td>Home</td>
<td>2050</td>
<td>15 min</td>
<td>0 cents</td>
</tr>
<tr>
<td>Home</td>
<td>0005</td>
<td>20 min</td>
<td>0 cents</td>
</tr>
<tr>
<td>Home</td>
<td>8900</td>
<td>22 min</td>
<td>50 cents</td>
</tr>
<tr>
<td>Home</td>
<td>1111</td>
<td>30 min</td>
<td>120 cents</td>
</tr>
<tr>
<td>Home</td>
<td>3344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PB, New York, NY, May 22, 2014
LOS Variables for Outer Loop

- (I) Individual trajectories by departure time period for the same driver (personal learning experience), if not:
 - (II) Individual trajectories for the same OD pair by departure time period across similar individuals (what driver can hear from other people through social networks), if not:
 - (III) Aggregate OD skims by departure time period (advice from navigation device)
Conclusions on Integration of ABM and DTA

- ABM-DTA integration is the most promising avenue:

- First ABM-DTA integration projects:
 - SHRP 2 C10:
 - Sacramento, Jacksonville, Tampa
 - MPO-sponsored (all PB):
 - CMAP, SANDAG, JTMT

- For small metropolitan areas under 1 million ABM-DTA integration is already realistic with many DTA platforms

- For large metropolitan areas DTA is still a challenge:
 - MatSim offers one of the first solutions
NY BPM – MatSim Integration Demonstration

- Promising real-size exercise for the mega-region of NY:
 - 20 million people handled by NY BPM to generate demand patterns
 - Full-size regional highway and transit networks handled by MatSim for entire-day simulation (24 hours)

- Next step:
 - Full integration of the NY ABM with MatSim utilizing innovative integration paradigm