Efficient detection of contagious outbreaks in massive metropolitan encounter networks

Lijun SUN^{1,2,3}

¹Future Cities Laboratory, Singapore-ETH Centre ²Dept. of Civil Eng., National University of Singaproe ³Human dynamics group, MIT Media Lab <u>sunlijun@nus.edu.sg</u>

https://sites.google.com/site/sunlijun1988/

Sun Lijun, FCL-SEC

NetSci 2014

Efficient detection of contagious outbreaks in massive metropolitan encounter networks

Kay W. Axhausen, ETH Zurich

Der-Horng Lee, NUS

Manuel Cebrian, University of Melbourne

Sun Lijun, FCL-SEC

NetSci 2014

Cattuto C, et al. (2010) Dynamics of person-toperson interactions from distributed RFID sensor

networks. PloS One 5(7):e11596.

Isella L, et al. (2011) What's in a crowd? Analysis of face-toface behavioral networks. J Theor Biol 271(1):166-180.

1st B

Sun Lijun, FCL-SEC

NetSci 2014

June 4, 2014

5th A

2nd B

Sun Lijun, FCL-SEC

NetSci 2014

• It is important to get the contact network structure

- It is important to get the contact network structure
- Expensive to collect
- Laborious in filtering of data
- Privacy sensitive

- It is important to get the contact network structure
- Think about data capturing physical proximity

• Large-scale long-term time-resolved high-resolution physical proximity data

- It is important to get the contact network structure
- Think about data capturing physical proximity

- Public transit smart card
- Ez-link card in Singapore

Sun Lijun, FCL-SEC

NetSci 2014

TABLE S1. Fields and contents of trip record dataset	
Field	Description
Irip ID	A unique number for each transit trip
Card ID	A unique coded number for each smart card (anonymised)
Passenger Type	The attribute of cardholder (Adult, Senior citizen and Child)
Service Number	Bus route service number (e.g. 96)
Direction	Direction of the bus route (0 and 1)
Bus Registration No.	A unique registration number for each vehicle (e.g. '0999')
Boarding Stop ID	A unique number for boarding stop (e.g. 40009)
Alighting Stop ID	A unique number for alighting stop (e.g. 40009)
Ride Date	Date of a trip (e.g. '2012-03-26')
Ride Start Time	Start (tapping-in) time of a trip (e.g. 08:00:00)
Ride End Time	End (tapping-out) time of a trip (e.g. 08:00:00)
Ride Distance	Distance of the trip (e.g. 12.0 km)

Sun Lijun, FCL-SEC

NetSci 2014

A contact network in high resolution

Sun Lijun, FCL-SEC

NetSci 2014

A contact network in high resolution

- 3 million users
- 1 week
- 1 billion contacts

A contact network in high resolution

- 3 million users
- 1 week
- 1 billion contacts
- time-resolved (second)
- spatial dimension included

• Simulating contagious outbreaks in such a network

- Simulating contagious outbreaks in such a network
- SI model with E (for 2 hours)

Sun Lijun, FCL-SEC

- Simulating contagious outbreaks in such a network
- SI model with E (for 2 hours)
- A simple and effective strategy for early detecting contagious outbreaks without mapping the full contact network structure is to find friend sensors
- Friendship paradox

OPEN O ACCESS Freely available online

June 4, 2014

Social Network Sensors for Early Detection of Contagious Outbreaks

Nicholas A. Christakis^{1,2}*, James H. Fowler^{3,4}

1 Faculty of Arts & Sciences, Harvard University, Boston, Massachusetts, United States of America, 2 Health Care Policy Department, Harvard Medical School, Boston, Massachusetts, United States of America, 3 School of Medicine, University of California San Diego, La Jolla, California, United States of America, 4 Division of Social Sciences, University of California San Diego, La Jolla, California, United States of America

Sun Lijun, FCL-SEC

NetSci 2014

Centrality measures

- Degree (Number of encountered people, k)
- Travel frequency (f)
- k-shell index in the aggregated network (ks)
- Temporal entropy (the hourly distribution of edges, S)
- Correlated measures
- All present friendship paradox

Centrality measures

The dashed lines are 90th, 99th, 99.9th, 99.99th percentiles

Sun Lijun, FCL-SEC

NetSci 2014

Centrality measures

The paradox can be generalized given the correlation in measures.

Sun Lijun, FCL-SEC

NetSci 2014

- Simulating contagious outbreaks in such a network
- beta = 0.0015/20 seconds

- Simulating contagious outbreaks in such a network
- beta = 0.0015/20 seconds

Sun Lijun, FCL-SEC

- Simulating contagious outbreaks in such a network
- beta = 0.0015/20 seconds
- Lead-time?

Sun Lijun, FCL-SEC

NetSci 2014

- Simulating contagious outbreaks in such a network
- beta = 0.0015/20 seconds
- Lead-time?
- Average Delta T for 5%<=alpha<25%

Sun Lijun, FCL-SEC

NetSci 2014

- Order individuals using centrality measures and divide the population into 100 slices.
- The performance of friend sensors.

• Order individuals using centrality measures and divide the population into 100 slices.

Sun Lijun, FCL-SEC

NetSci 2014

• All top slices provide good warning, (except ks with beta=0.05). Which is better?

Sun Lijun, FCL-SEC

NetSci 2014

- Better sensor
- Average lead-time provided
- Sensor size (monitoring cost and efficiency)
- Sensor reliability

Sun Lijun, FCL-SEC

NetSci 2014

Discussion

- Still, the data only covers a small fraction of daily-life
- **Bias of such encounters:** Such encounters on transit vehicles occur more often between perfect strangers than among friends, colleagues or families, making the network incomplete for predicting epidemic spreading via all possible transmission pathways.
- No shortest path based centrality measures used
- SIR / SEIR models

Conclusion

- Using transit data to build a time-resolved physical proximity network
- Friendship paradox can be generalized in correlated centrality measures
- We examine the friendship paradox in SI spreading
- The simple centrality --- degree, can provide sensors which provide substantial and reliable lead-time, but only cover 0.01% of the population.
- arxiv:1401.2815

Thank you!

Lijun SUN^{1,2,3}

¹Future Cities Laboratory, Singapore-ETH Centre ²Dept. of Civil Eng., National University of Singaproe ³Human dynamics group, MIT Media Lab <u>sunlijun@nus.edu.sg</u>

https://sites.google.com/site/sunlijun1988/

Sun Lijun, FCL-SEC

NetSci 2014

Appendix

June 4, 2014

NetSci 2014

Sun Lijun, FCL-SEC