Characterizing Travel Time Reliability and Passenger Path Choice in a Metro Network

Lijun SUN

Future Cities Laboratory, Singapore-ETH Centre

lijun.sun@ivt.baug.ethz.ch

National University of Singapore (NUS)

(FCL) FUTURE 未来
CITIES 城市
LABORATORY 实验室

(SEC) SINGAPORE-ETH 新加坡-ETH CENTRE 研究中心

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

- Service Reliability
- Travel time
- Train load

	Platform A	Arriving In	
Destination		1 min	
	Platform B		
Destination		4 mins	
5 Marina Bay 5 Marina Bay		4 mins	

- Transfer convenience
- Service disruption
- Flow assignment

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

- Service Reliability
- The reliability of metro systems is higher than other transit modes. However, travel time variability still shows accumulative effect.

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

- Most metro systems are closed environments, which only register transactions when passengers enter and leave the system
- Crucial questions:
- Predicting travel time (and reliability)
- Inferring route choices
- Inferring train load
- Identifying critical transfer location
- Building sophisticated flow assignment models
- All linked together.....

- Data
- Operation log?
- Transfer demand?
- Link flow?
- Route choice?
- Trajectory?
- Smart card (Boarding station, Alighting station, Travel time)

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

- What we know? (Observed)
 - Network configuration
 - Boarding station B
 - Alighting station A
 - Travel time t

- What we do not know? (Unknown)
 - Travel time on each link
 - Reliability of each link
 - Other time cost (waiting at platform, walking between fare gantry and platform)
 - Route choice

Sun Lijun, FCL-SEC

- Research question
- Given observations to infer unknowns

observed

- Boarding station B
- Alighting station A
- Travel time t

> Travel time on each link

- o Reliability of each link
- o Other time cost
- o Route choice

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

unknown

- Methodology: Bayesian inference
- P(unknown|observed) <
 P(observed|unknown) x P(unknown)

Likelihood x Prior

observed

- Boarding station B
- Alighting station A
- Travel time t

o Travel time on each link

- o Reliability of each link
- o Other time cost
- o Route choice

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

September, 2014

unknown

- Travel time on each link
- Travel time variation on each link (in-vehicle / transfer links)
 - Assuming that link cost follows a normal distribution, which has a constant coefficient of variation (linear mean v.s. std)

$$\mathbf{x}_a \sim \mathcal{N}(\mathbf{c}_a, (\alpha \mathbf{c}_a)^2)$$

- Assuming that all links are independent
- Then the travel time on a particular route r follows

$$t | r \sim \mathcal{N}\left(\sum_{a \in r} c_a, \alpha^2 \sum_{a \in r} c_a^2\right)$$

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

- Other time cost
 - Assuming that other cost follows a normal distribution, with

$$y \sim \mathcal{N}(m, \sigma_y^2)$$

Assumed to be consistent for all OD pairs

• Route choice

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

More than 30 routes in total

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

- Route choice (in general)
- Multinomial Logit (MNL)
- **Representative Utility** $V_i = \sum_k \theta_k X_{ik}$
- Choice probability $P_i = \frac{\exp(V_i)}{\sum_{j \in A} \exp(V_j)}$
- Parameters θ_k are unknown

- Route choice (for the metro network)
- Multinomial Logit (MNL)

• Utility
$$V_r = \theta_1 \times \sum_{a \in r \setminus r_t} c_a + \theta_2 \times \sum_{a \in r_t} c_a$$

in-vehicle time

transfer time

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

- Route choice (for the metro network)
- Multinomial Logit (MNL)

• Utility
$$V_r = \theta_1 \times \sum_{a \in r \setminus r_t} c_a + \theta_2 \times \sum_{a \in r_t} c_a$$

in-vehicle time

 $|R_w| \ge 1$

transfer time

• Choice probability

$$f_w(r | \mathbf{c}, \alpha, \mathbf{\theta}) = \frac{\exp(V_r)}{\sum_{r \in R_w} \exp(V_r)}$$

For each OD pair w

hEART 2014, Leeds University

- Observing travel time $t = t_b t_a$ for OD pair w = (a,b)
- The probability observing t on route r

$$t | r \sim \mathcal{N}\left(\sum_{a \in r} c_a + m, \alpha^2 \sum_{a \in r} c_a^2 + \sigma_y^2\right)$$

• The probability observing t on OD pair w

$$p_{w}(t | \mathbf{c}, \alpha, \mathbf{\theta}, m) = \sum_{r \in R_{w}} h(t | r) f_{w}(r | \mathbf{c}, \alpha, \mathbf{\theta}, m)$$

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

- The likelihood of observation all smart card transactions
- (travel time)

$$\mathcal{L}(\mathbf{c},\alpha,\mathbf{\theta},m \,|\, \mathbf{T}) = \prod_{w \in W} p(\mathbf{T}_{w} \,|\, \mathbf{c},\alpha,\mathbf{\theta},m)$$

$$=\prod_{w\in W}\left(\prod_{t\in\mathbf{T}_w}\left(\sum_{r\in R_w}h(t|r)f_w(r|\mathbf{c},\alpha,\mathbf{\theta},m)\right)\right)$$

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

- Prior knowledge
- Mean link travel time follows normal distribution

$$c_a \sim \mathcal{N}(2,1)$$

- Travel time between stations / transfer time: around 2 minutes
- Other cost follows a normal distribution

$$m \sim \mathcal{N}(4,1)$$

- Waiting time plus access/egress cost: around 4 minutes in total

- Prior knowledge
- Parameters for MNL: we do not have any information

• In the literature:

 Raveau S, Guo Z, Muñoz JC, & Wilson NHM (2014) A behavioural comparison of route choice on metro networks: Time, transfers, crowding, topology and socio-demographics. *Transportation Research Part A: Policy and Practice* 66:185-195.

Attribute	London Underground		Santiago Metro		
	Parameter	t-Value	Parameter	t-Value	
In-vehicle time	-0.121	-9.20	-0.074	-6.30	
+Moming peak	-0.084	-5.10	-0.014	-2.52	
+Afternoon peak	n.a.ª	n.a.	-0.009	-2.62	
+Restrictive Purpose	-0.042	-2.42	-0.025	-5.93	
Waiting time	-0.269	-14.21	-0.083	-3.62	
+Moming peak	-0.208	-5.94	-0.094	-2.60	
Walking time	-0.299	-9.32	-0.210	-2.34	
+Women	-0.048	-2.06	-0.074	-2.67	
Number of transfers	-1.321	-4.14	-0.662	-4.19	
Ascending transfers	-0.206	-2.53	-0.308	-2.60	
Even transfers	0.613	3.82	n.a. ^b	n.a.	
Descending transfers	0.000 ^c	n.a.	0.000 ^c	n.a.	
Assisted transfers	0.000 °	n.a.	0.000 ^c	n.a.	
Semi-assisted transfers	-0.271	-5.30	n.a. ^b	n.a.	
Non-assisted transfers	-0.398	-6.33	-0.182	-5.11	
Mean occupancy	-2.898	-3.25	-0.935	-5.10	
Getting a seat	0.117	2.22	0.105	3.68	
Not boarding	-0.502	-6.23	-0.358	-2.29	
Angular cost	-0.088	-3.89	-0.029	-3.84	
+Restrictive purpose	0.049	3.79	0.011	2.70	
Map distance	-0.364	-5.43	-0.278	-4.83	
Number of stations	-0.424	-5.07	-0.168	-3.62	
Turning back	-0.650	-8.85	-0.142	-8.10	
Turning away	-0.943	-7.77	-0.231	-8.87	
Commonality factor	-0.396	-3.74	-0.541	-3.41	
Sample size	17,073		28,961		
Log-likelihood	-6690		-12,881		
Corrected ρ^2	0.567		0.383		

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

- Prior knowledge
- Parameters for MNL: we do not have any information
 - We take uniform priors

$$\boldsymbol{\theta} \sim \mathcal{U}(-4,0)$$

- Coefficient of variation
 - We take a uniform prior

$$\alpha \sim \mathcal{U}(0,1)$$

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

Posterior

$$\pi(\mathbf{c},\alpha,\mathbf{\theta},m|\mathbf{T}) \qquad \text{Likelihood x Prior} \\
\propto \prod_{w \in W} \left(\prod_{t \in \mathbf{T}_{w}} \left(\sum_{r \in R_{w}} p(t|r) f_{w}(r|\mathbf{c},\mathbf{\theta}) \right) \right) \times \prod_{c \in \mathbf{c}} \phi(c;2,1) \times \phi(m;4,1)$$

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

- MCMC (Markov Chain Monte Carlo)
- Variable-at-a-time Metropolis sampling scheme

$$\boldsymbol{\delta} = (\boldsymbol{c}_1, \cdots, \boldsymbol{c}_N, \boldsymbol{\alpha}, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{m}) = (\boldsymbol{\delta}_1, \cdots, \boldsymbol{\delta}_{N+4})$$

- MCMC (Markov Chain Monte Carlo)
- Variable-at-a-time Metropolis sampling scheme

$$\boldsymbol{\delta} = (\boldsymbol{c}_1, \cdots, \boldsymbol{c}_N, \boldsymbol{\alpha}, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{m}) = (\boldsymbol{\delta}_1, \cdots, \boldsymbol{\delta}_{N+4})$$

- STEP (o)
- Specify initial sample

$$\boldsymbol{\delta}^{(0)} = \left(\boldsymbol{c}_{1}^{(0)}, \cdots, \boldsymbol{c}_{N}^{(0)}, \boldsymbol{\alpha}^{(0)}, \boldsymbol{\theta}_{1}^{(0)}, \boldsymbol{\theta}_{2}^{(0)}, \boldsymbol{m}^{(0)} \right)$$

• Set t=o

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

- STEP (1)
- At step t, sample in turn $\delta_i^{(t)}$ (for i = 1: N+4)
- Where $\delta_{-i}^{(t)} = \left(\delta_1^{(t+1)}, \cdots, \delta_{i-1}^{(t+1)}, \delta_{i+1}^{(t)}, \cdots, \delta_{N+4}^{(t)}\right)$
- is the latest updated variables except $\delta_i^{(t)}$
- Accept $\delta_i^{(t+1)} = \delta_i^*$ with probability $\mathcal{A}\left(\delta_i^*, \delta_i^{(t)}\right)$
- Otherwise, set $\delta_i^{(t+1)} = \delta_i^{(t)}$

- STEP (2)
- If t < T : set t = t + 1
 - Go to STEP (1)
- Else:
 - Stop iteration

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

Numerical Example: MRT Network in Singapore

- MCMC provides distribution of unknown parameters rather than one value
- Burn-in: 5000 steps
- Effective sample: 25000 (25000+5000 draws in total)

- Standard deviation for
- Gaussian random walk Metropolis proposals

$$\delta_i^* = \delta_i^{(t)} + \epsilon_i \quad \epsilon_i \sim \mathcal{N}(\mathbf{0}, \sigma_i^2)$$

Sun Lijun, FCL-SEC

Numerical Example

• MCMC provides distribution of unknown parameters rather than one value

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

Numerical Example

- In this example
- Our prior knowledge is inaccurate
- the large number of travel time observations has corrected it

Numerical Example

• Flow assignment based on route choice model

Sun Lijun, FCL-SEC

hEART 2014, Leeds University

Conclusion

- An integrated statistical model on travel time reliability and route choice behavior
- A metro network in which only travel time is observed
- Bayesian inference framework to formulate posterior probability
- Given the high-dimension of parameters, variable-at-a-time Metropolis sampling algorithm is applied to obtain posterior distribution.

Conclusion

- An integrated statistical model on travel time reliability and route choice behavior
- A metro network in which only travel time is observed
- Bayesian inference framework to formulate posterior probability
- Given the high-dimension of parameters, variable-at-a-time Metropolis sampling algorithm is applied to obtain posterior distribution.
- With this framework, we characterized travel time and its variation on each link. Meanwhile, we also identified contribution of different factors in determining passenger route choice behavior/movement.

Discussion & Outlook

- Most metro systems are closed environments, which only register transactions when passengers enter and leave the system; as a result, route choice (interchange/transfer) and service reliability are not captured in smart card data
- Our framework does not require an specific route choice model; thus, it can be applied on a more sophisticated model which takes more factors into account, helping us to further understand passenger behavior and build advanced flow assignment models, and further infer individual train load
- Although Singapore's network is simple, this framework shows great potential in applying on more complex metro networks, such as London Underground
- Identifying critical/crowding location/facility in metro network

Sun Lijun, FCL-SEC

Thank you!

Lijun SUN

Future Cities Laboratory, Singapore-ETH Centre <u>lijun.sun@ivt.baug.ethz.ch</u>

Sun Lijun, FCL-SEC

hEART 2014, Leeds University