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Motivation: Energy Demand Modeling

» Case studies integrated modeling of electricity demand and
supply related to Evs

» focus: electricity demand
« Often aggregated models used in this context
» good for getting an overview of supply and demand

» Disaggregated models needed for uncovering bottlenecks in the
electricity network (e.g. power-line constraints and transformer
overloads)



Activity-based Modeling (Bottom-up)
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How do we Model Travel Demand?

* MATSIm (open source) — ETH Zurich, TU Berlin

» Synthetic population: people -> agents

» Individual preferences (based on survey data)

« Optimization of activity and travel demand for whole day
 Initial plans based on census data/travel diaries

* Plans contain acitivites (work, shopping, education) and trips

» Several transport modes available (car, walk, public transport and
bike)
» First step of optimization: simulation
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MATSIm

e simulated plans are scored

« Lower travel time and performing activities gives better score
« The goal of each agent is to maximize its score

 [terative process, based on idea of evolutionary algorithm

* Replanning (change travel mode, route, times, etc.)

» Co-existence of several plans

« Bad plans deleted over time, good plans have higher chance of
getting selected for execution -> survival of the fittest

* Iteration continues -> optimal plans (“Nash Equilibrium”)
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Case Study 1: Berlin Scenario/Test scenario (2009)

- Goal: Evaluate impact of different charging controls on electricity
grid
- Scenario

Berlin network

16°000 agents => 1% population sample

Adjusted road network capacities

Home-work-home, home-education-home activity chains

Charging plugs available at all parking — standard swiss plugs
(3.5 kW, 240V, 16 A, single-phase)

PHEVs with 10kWh battery size
Energy consumption model: same for all vehicles

4 hubs (arbitrary division of network related to el. grid), base
load of a typical western city



TESF Modules - Charging Schemes

- uncontrolled charging: start charging upon arrival

- Time of use: agents react to prices and try to minimize cost;
can be included in utility function of agent

- Controlled/Smart charging

- goal: avoid bottlenecks in grid (e.g. transformer/ power-
line overloads)

- tried with two different levels of information/flexibility in
separate case studies:

- Knowledge about how long planned to stay parked +
future planned trips and charging possibilities of day
(“max. possible knowledge/flexibility”)

- Knowledge about how long planned to stay parked
and desired charge when leaving

- Energy markets



PEV Management and Power System Simulation (PMPSS)

- Each hub models an urban area; each hub contains furnace for
meeting heat demand; transformer for el. supply.
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Base load curve at the 4 hubs (non-EV load)
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The maximum power input, e.g., transformer capacity ratings for hubs 1—4 is defined as
9 MW, 4.4 MW, 8 MW and 8.2 MW, respectively
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Simulating EVs/PHEVs in MATSIim

+ energy consumption
model, fleet definition

initial Smulation charging —— relaxed
demand module g demand
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grid constraint violations?
=> In case of controlled charging,
try to adapt demand

charging information (time, location)
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Uncontrolled Charging: Start Charging at Arrival
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Time of Use Charging: Dual Tariff

Dual Tariff Charging - Vehicle Electricity Consumption
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Centralized Smart Charging

parking locations rid constraints
and durations, energy ?from PMPSS)
demand (from MATSiIm)

N/

Central Smart
Entity
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assign charging times
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Centralized Smart Charging

1. Iteration — grid contraints violated PMPSS Price Signal
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Case Study 2: Real World Scenario for EWZ (2011)
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Transportation Energy Simulation Framework (TESF)
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System Overview

battery capacities analysis of results (energy
consumption, CO2

emissions, etc.)

charging location all vehicle

; energy demand
CSimuIation of Fleet Dynamics) charging power &y
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constraint violations
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Fleet Dynamics

Vehicle Fleet

Parametrization/ Categories

Konventionell
Voll-Hybrid
Plug-In Hybrid
E-Fahrzeug

Benzin
Elektrizitat

<50 kW
50-70 kW
70-90 kW
90-110 kW
110-140 kW
140-170 kW
170-200 kW
>200 kW

<900 kg
900-1100 kg
1100-1300 kg
1300-1500 kg
1500-1700 kg
1700-1900 kg
1900-2100 kg
2100-2300 kg
2300-2500 kg
>2600 kg

Scenarios

License Statistics

Fleet
Dynamics

Relativer Anteil der Flotte

2010 2035 2050

- Konventionell - Voll-Hybrid - Plug-in Hybrid |:| Batterie-elektrisch
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Energy Consumption Regression Model (con’d)
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Power System Simulation and Load Balancing
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Power System Simulation and Load Balancing (con’d)

» Parking assigned to closest medium voltage node (11/22 kV)

« Controlled charging tries to avoid overload of transformers and
power lines, while usage flexibility of charging (only parking
duration)

* Optimizations every 1i5min
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Scenario Parameters

OFleet Composition
«High»

«Low»

Relativer Anteil der Flotte
Relativer Anteil der Flotte

2050 2010 2020 2035 2050

I <onventionell [ Voll-Hybrid M Plug-in Hybrid [0 Batterie-elektrisch I «onventionell [ vol-Hybrid [ Plug-in Hybrid [0 Batterie-elektrisch

2010 2020 2035

® Charging Infrastructure:
- Availability: home | work | everywhere
- Charging power: 3.5 kW | 11 kW
® Improvement of Vehicle Technology
- Batterysize
- Improved energy efficiency
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Overview: Scenarios

" Chargin
Fleet Composition &ing
Infrastructure
home work | oth.er
ocations
2010 low / / / (no EVs/PHEVs)
Scenario A: 2020 3.5 kW / / 80 km
«Low» 2035 3.5 kW / / 8o km
2050 3.5 kW / / 150 km
2010 / / / (no EVs/PHEVs)
Scenario B: 2020 3.5 kW 11 kW / 80 km
«Medium» 2035 35kWw | 1kw / 80 km
2050 3.5 kW 11 kW / 150 km
2010 / / / (no EVs/PHEVs)
Scenario C: 2020 3.5 kW 3.5 kW 3.5 kW 80 km
«High» 2035 11 kW 11 kW 11 kW 80 km
2050 11 kW 11 kW 11 kW 150 km
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Distance Travelled
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PHEVs: Electric Drive

share of daily driving covered electrically [%]
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PHEVs: Electric Drive (Battery Size vs. Charging Availability)
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Energy Demand
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CO2 Emissons
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EV/PHEV Anzahl
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Results: Electricity Network, Scenario C
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Scenario C, 2050: Number of Overloaded Transformers
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Snapshot of Resource Utilization at 10 a.m. (Scenario C,

20E0)
J 7
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Current Research: Policy Design & Evaluation

- Scenario specific policy change model (price/infrastructure)

Initial boundry - General boundy condition change models (e.g. population, relocation, jobs, etc.)

conditions ‘ - Scenario specific changes, e.g. introduction of car sharing service, private taxi, etc.
I/Simulate - (i)\—) Update Scenario L3 simulate year (i+1) ‘ Update Scenario ‘_N/S{mulate year (n)“—\,
\ VJ boundry conditions ‘ y boundry conditions ‘ \ final year /

Keep mid-term
agent choices

System outputs year System outputs year

System outputs year :
(i+1) (n)

(i)
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Simple example: EV Car share

Interaction between
Interaction of subsidies for EVs: batteries, free parking
and

taxes for CVs: vehicle tax, fuel tax, higher road pricing,
parking cost, etc.
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Outputs

Policy Evaluation/Performance — including price incentives and
Infrastructure change

= Find possible “Hidden” side effects
— Bad vs. Better Policies
Vehicle fleet dynamics, mode change, etc.

Simulation over multiple years (CO2 Emission, Energy demand,
Investments, Tax redistribution, etc.)
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Questions?
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