Long Term Simulation of a Continuous Target-Based Model

Maxim Janzen

IVT, ETH Zürich

10th July 2014

Maxim Janzen (IVT, ETH Zürich)

Long Term Simulation with C-TAP

10th July 2014 1 / 20

Outline

- Behavioral Targets
- Acitivities and State Values
- Core Algorithm

2 Activity Planning

- C-TAP Decision Model
- Long-Term-C-TAP Decision Model

3 Results

- Validation
- Runtime Analysis

Future Work

Motivation

Current State:

Microscopic traffic flow simulations focus on daily life behavior.

But:

There is a significant part of traffic volume caused by long term activities.

Our goal:

Cover the long term acitivities.

Continuous Target-Based Model

Core ideas:

- microscopic travel demand model,
- agents represent virtual people,
- make decisions continuously / without any replanning,
- our goal: long term / long distance travel demands.

Continuous **T**arget-based **A**ctivity **P**lanning (C-TAP) simulation (Ph.D. thesis by F. Märki (2014)).

C-TAP: Targets

Behavioral Targets:

Describe the motivation of agents to perform an activity.

Possible targets are:

- percentage of time target
- frequency target
- duration target

C-TAP: Targets

Behavioral Targets:

Describe the motivation of agents to perform an activity.

Possible targets are:

- percentage of time target
- frequency target
- duration target

Note: definitions of the first two target types include observation windows.

C-TAP: Activities and State Values

For each target there is a corresponding activity and possibly a state value.

Acitivities:

Activities are executed by the agents in order to satisfy their motivations / targets.

State Values:

Targets with observation windows include state values for the agents. They increase during the execution of the relevant activity, respectively decrease during non-execution.

C-TAP: Core Algorithm

```
      Algorithm 1 Core C-TAP Algorithm

      while simulation end not reached do

      for all agent with no activity do

      state ← UpdateAgentState(agent)

      nextActivity ← MakeDecision(agent, state)

      agent.execute(nextActivity)

      end for

      nextTimeStep = minimum( all execution endpoints)

      proceed to nextTimeStep

      end while
```

Main Question: Implementation of MakeDecision.

• • = • • = •

Core: Optimization of the discomfort value:

$$D(t) = \sum_{k=1}^{n} (f_{target}^{k}(t) - f_{state}^{k}(t))^{2}$$

$$(1)$$

n: the number of targets, $f_{target}^{k}(t)$: target value function, $f_{state}^{k}(t)$: state value function.

Core: Optimization of the discomfort value:

$$D(t) = \sum_{k=1}^{n} (f_{target}^{k}(t) - f_{state}^{k}(t))^{2}$$
(1)

n: the number of targets, $f_{target}^{k}(t)$: target value function, $f_{state}^{k}(t)$: state value function.

C-TAP model use mainly the discomfort reduction:

$$DR(t_{es}, t_{ee}) = D(t_{es}) - D(t_{ee}), \qquad (2)$$

 t_{es} is the execution starting time t_{ee} the execution end time.

The decision procedure is subdivided into several steps.

- maximize the product of $DR(t_{es}, t_{ee}) \cdot LA(t_{ee})$ for every available activity. More precisely, the idea is to find the t_{ee} maximizing the product.
- **②** multiply with execution time ratio $\frac{t_{ee}-t_{es}}{t_{ee}-t_{ts}}$, where t_{ts} is the starting time of the travel.
- **③** multiply with an optional random term $(1 + \epsilon)$.

The decision procedure is subdivided into several steps.

- maximize the product of $DR(t_{es}, t_{ee}) \cdot LA(t_{ee})$ for every available activity. More precisely, the idea is to find the t_{ee} maximizing the product.
- 2 multiply with execution time ratio $\frac{t_{ee}-t_{es}}{t_{ee}-t_{ts}}$, where t_{ts} is the starting time of the travel.
- **③** multiply with an optional random term $(1 + \epsilon)$.
- results in a heuristic function:

$$HF(t_{ts}, t_{es}, t_{ee}) = DR(t_{es}, t_{ee}) \cdot LA(t_{ee}) \cdot \frac{t_{ee} - t_{es}}{t_{ee} - t_{ts}} \cdot (1 + \epsilon).$$
(3)

The agent will now execute the activity, which yields the highest HF-value.

通 ト イヨ ト イヨト

Long-Term-C-TAP Decision Model

Default Model:

- heuristic function based on discomfort reduction.
- consider one activity

Model for the long term simulation:

- sum of all discomforts
- consider two or more activities

Long-Term-C-TAP Decision Model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Long-Term-C-TAP Decision Model

10th July 2014 11 / 20

Optimization Process

Parameters:

Current time $t_0 \rightarrow$ is fixed. Travel time $t_t \rightarrow$ is constant. \implies discomfort depends on t_1 and t_2 .

We fix the first Activity.

 \implies *n* two-dimensional minimization problems.

Note:

- *n* is small.
- we assign just the first activity.

Model Validation - Used Data

Data Source:

- Survey from german INVERMO project (Chlond et.al. (2006)).
- 1944 people reporting in total 6593 long distance trips (\geq 100km).

Calibration:

For each reported traveling purpose

- a percentage-of-time target (relative time spent),
- a duration target (average duration).

Additionally, we create also for the *daily life* activity one percentage-of-time target.

Validation - Number of Trips per Purpose

sampled trips	Trip Duration					
- simulated trips	0h-4h	4h - 4d	4d - 14d	14d - 30d	30d+	
-10	1	0	0	0	0	
-9	1	0	0	0	0	
-8	0	0	0	0	0	
-7	0	0	0	0	0	
-6	0	0	0	0	0	
-5	103	0	0	0	0	
-4	239	0	0	0	0	
-3	11	1	0	0	0	
-2	30	22	0	0	0	
-1	8	918	2	0	0	
0	46	2431	955	77	6	
1	101	101	138	39	1	
2	4	0	0	0	0	

3

Image: A match a ma

14 / 20

Validation - Average Trip Duration per Purpose

Boxplot of the difference between sampled average trip duration and simulated average trip duration

Validation - Out of House Days (Weekly Pattern) Relative Distribution of the Trips per Weekday and Purpose

Maxim Janzen (IVT, ETH Zürich)

Long Term Simulation with C-TAP

10th July 2014

16 / 20

Validation - Out of House Days (Yearly Pattern) Relative Distribution of the Trips per Calendar Week and Purpose

Runtime Results

	Overall Runtime	Optimization Steps
	[h:min:s]	
C-TAP	19:05:31	7451489
Long-Term C-TAP	00:01:14	19764

(日) (同) (三) (三)

æ

Runtime Results

	Overall Runtime	Optimization Steps
	[h:min:s]	
C-TAP	19:05:31	7451489
Long-Term C-TAP	00:01:14	19764

Not necessary a hint of a high accelaration, but a hint of an implementation with a much smaller number of parameters needed for a simulation in reasonable runtime.

一日、

Future Work

Short Term:

• Improve Reproduction of Seasonal Effects

Mid Term:

- Location Choice
- Mode Choice
- Budget Restrictions

Long Term:

Traffic Simulation

Thank You!

- ∢ ≣ →

Image: A math a math

э