M.A.B. van Eggermond & Erath A.L. (2014), Pedestrian and transit accessibility on a micro-level: results & challenges, Paper presented at the World Symposium for Transport and Land-Use Research (WSTLUR), Delft, the Netherlands, 2014 Pedestrian and transit accessibility on a micro-level: results & challenges

WSTLUR Delft, the Netherlands

June 2014

(FCL) FUTURE 未来
CITIES 城市
LABORATORY 实验室

(SEC) SINGAPORE-ETH 新加坡-ETH CENTRE 研究中心

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Four components

Land-use component

Transportation component

Temporal component

Individual component

Translated in five measures

Spatial separation

Cumulative opportunities

Gravity measures

Utility measures

Time / space measures

Accessibility on a zonal level

But..... A high diversity within a zone

Accessibility from anywhere to everywhere

Calculating object-fine accessibility

Calculating object-fine accessibility

Pedestrian accessibility

Pedestrian accessibility

Calculation

origin building (location) **O** to all destination buildings (location) **D** within radius **R**.

Requirements

Activity locations

Opportunities available at building **D**

Costs of traveling from **O** to **D**

Distance or opportunity decay

D

Public transport accessibility

Calculation

origin building (location) **O** to all via public transport stop **T** within distance **R** to destination buildings (location) **D** in region of interest

Requirements

Activity locations

Opportunities available at building **D**

Costs of traveling from **O** to **T / D** to **T**

Costs of traveling from **T** to all **T**

Impedance

Singapore

Land area of 712 km2 (2010; 697 km2, 2000)

Total population 5.08 million (2010; 4.03 million, 2000)

GDP per capita amounts to S\$ 59,813 (US\$ 45,200, 2010),

Vehicle ownership 392,961 in 2000 to 597,746 in 2010,

Or 1 car per 10 households in 2004 to 1 car per 8.8 households in 2008 (Choi & Toh, 2010).

Data sources Road centrelines Lanemarkings Overheadbridges Underpasses **Building addresses Building centroids** Bus stops Train station entrances and platform location

Network generation:

Sidewalks created on both sides of road, length determined by offset width (5 meters). Crossing at overhead bridge

Source data

Lane marking

Network generation

Crossing, length determined by offset width

(5 meters)

Source data

MATSim Singapore (agent-based transport demand simulation)

1 million agents, > 4000 transit stops, > 400 bus lines, 4 MRT lines

Average link travel times per 15 minutes are calculated

Shortest transit route in each 15 minutes interval between each transit stop

Median travel time between 7am and 9:30 am is used.

Activity locations

Work locations

Pedestrian accessibility

Calculation of shortest route to all buildings within **1000 meter radius**. . Impedance factor of -0.2.

Public transit accessibility

Select transit stops within **700 meters** of origin building & destination building Determine shortest total travel time combination of walking time and transit time. Impedance factor of -0.2.

$$- A_i = \sum_{j=1}^n d_j \exp(\alpha t_{ij})$$

Results

Study area

	Walk accessibility to jobs			Transit accessibility to jobs		
Planning zone	Euclidean	Centreline	Offset	Euclidean	Centreline	Offset
Downtown Core	27,182	11,583	8,152	43,564	21,936	20,210
Museum	13,764	4,104	3,536	51,319	24,075	21,455
Newton	11,242	2,791	1,922	33,290	10,048	8,671
Orchard	15,566	6,484	4,741	51,120	24,137	21,503
River Valley	8,844	1,847	1,361	27,503	12,726	11,048

Downtown pedestrian accessibility - Euclidean

Downtown pedestrian accessibility - network

Distance to transit with different networks

Downtown transit accessibility - Euclidean

Downtown transit accessibility - network

Data issues.....

Missing crossings

Matching buildings to the road network

Outlook

Outlook

OSM pedestrian network Differentiated transit stop selection

Generalized link costs for pedestrians Realistic transit travel times in generalized format (GTFS) Destination similarity Destination competition Directional similarity Multiple types of opportunities

Different types of measures

Compare network quality based on different measures

Visualization

Calculation

Incorporation in hedonic pricing and choice models

The research conducted at the Future Cities Laboratory is funded by the Singaporean National Research Fund (NRF) and the ETH Zurich. We wish to express our gratitude to the Land Transport Authority for providing us data sets on land transport in Singapore. Also we are very thankful to the Singapore Land Authority for providing us with a wide range of data sets.

Literature

- Bhat, Chandra R., Susan L. Handy, Kara Kockelman, Hani Mahmassani, Issam Srour and Lisa Weston (2001). 'Assessment of Accessibility Measures'.
- Choi, C. C., & Toh, R. (2010). Household interview surveys from 1997 to 2008: A decade of changing travel behaviours. Journeys, 5(May 2010), 52–61.
- Geurs, Karst T. and Bert van Wee (2004). 'Accessibility Evaluation of Land-Use and Transport Strategies: Review and Research Directions', *Journal of Transport Geography* 12(2): 127– 140.
- Erath, A., Fourie, P. J., van Eggermond, M. A. B., Ordóñez Medina, S. A., Chakirov, A., & Axhausen,K. W. (2012). Large-scale agent-based transport travel demand model for Singapore. In IATBR (Ed.) 13th International Conference on Travel Behaviour Research (IATBR). Toronto.
- Ordóñez Medina, S. A., & Erath, A. (2013). Estimating Dynamic Workplace Capacities by Means of Public Transport Smart Card Data and Household Travel Survey in Singapore. Transportation Research Record: Journal of the Transportation Research Board, 2344, 20– 30.

Appendix

Routable road network – 500m max distance

Simple pedestrian network – distance 500m

Offset network – distance 500m

Offset network with overhead bridges

