Direct Demand models: A relevant alternative In the age Of Big Data?

KW Axhausen

IVT
ETH
Zürich

December 2014
Acknowledgements

Jeremy Hackney
Michael Bernard
Ming Lu
Georgios Sarlas
Issue at hand
Activity scheduling dimensions envisaged

Number and type of activities
Sequence of activities

• Start and duration of activity
• Composition of the group undertaking the activity
• Expenditure division
• Location of the activity

• Movement between sequential locations

• Location of access and egress from the mean of transport
 • Parking type
• Vehicle/means of transport
• Route/service
• Group travelling together
• Expenditure division
Land use dimensions envisaged

Parcel use by type
Land value by parcel

- Intensity of use
- Value added by the use
 - Wages paid to the workers
 - Rents paid to the landlords
- Environmental services rendered
- Aesthetic externalities

- Space for movement between locations
- Space for parking at the locations
- Service level of public transport, taxi & sharing fleets

- Home-work linkage
- Home-education linkage
Are we willing?

To agree to the (comprehensive) tracking required of:

- Public transport use (smart cards, face recognition via CCTV)
- Car use (ERP, automatic video analysis, blue tooth)
- Walking (face recognition via CCTV, phone identification)
- Movement (GSM records, GPS traces)

To wait for the models:

- (To be programmed)
- To be estimated
- To be implemented
- To be calibrated
- To be run and the results analysed
- To be run including a full/adequate risk analysis
What do we need?
What does service planning and pricing need?

- Basic:
 - $\Delta \text{volume}_{ijmg}$
 - $\Delta \text{travel time}_{ijmg}$
 - $\Delta \text{price}_{ijmg}$

- Group g by
 - Income
 - (Distance)
 - Purpose
 - Age
 - Gender
 - Ethnicity
What does CBA need?

- Basic:
 - $\Delta \text{volume}_{im}$
 - Δspeed_{im}

- Advanced:
 - $\Delta \text{volume}_{ijm}$
 - $\Delta \text{travel time}_{ijm}$
Minimum requirements
\(q, v \) sensitive to density

- Intensity of land use by
 - Car-owning population (by type)
 - Employment (by type)

- Network densities by
 - Node
 - Link capacity
 - Parking spaces
 - Seat capacity

- Prices (densities) of
 - Parking
 - Link
Some initial examples
Hackney and Bernard on speeds in Kt. Zürich
Average weekday peak hour speeds (Kanton Zürich)
Alternative approach and its model formulation

\[\rho W_a Y \quad \lambda W_e \varepsilon \quad u \sim N(0, \sigma) \]

- OLS
- Spatial error model (SEM)
- Spatial autoregressive model (SAR)
- General spatial model (SAC)
Spatial weighting matrix (2) – Spatial/network neighbour

Spatial neighbour:
• n closest links from centre of link

5 spatial neighbours
(Euclidian distance)

Network neighbour:
• reachable links passing n (max.) intersections

2 intersections → ~5 neighbours
(network distance)
Best spatial weighting

<table>
<thead>
<tr>
<th>Model</th>
<th>Best W-matrix</th>
<th>\bar{R}^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighted least squares (WLS)</td>
<td>not needed</td>
<td>0.5347</td>
</tr>
<tr>
<td>Spatial error model (SEM)</td>
<td>$W_a: not needed$</td>
<td>0.5749</td>
</tr>
<tr>
<td></td>
<td>$W_e: 3$ network neighbours</td>
<td></td>
</tr>
<tr>
<td>Spatial autoregressive model (SAR)</td>
<td>$W_a: 4$ network neighbours</td>
<td>0.5518</td>
</tr>
<tr>
<td></td>
<td>$W_e: not needed$</td>
<td></td>
</tr>
<tr>
<td>General spatial model (SAC)</td>
<td>$W_a: 4$ network neighbours</td>
<td>0.5827</td>
</tr>
<tr>
<td></td>
<td>$W_e: 3$ network neighbours</td>
<td></td>
</tr>
</tbody>
</table>
Sarlas on Swiss speeds
Case study
Estimation and comparison of models of average v

<table>
<thead>
<tr>
<th>Explanatory variables</th>
<th>SAR error coeff.</th>
<th>SAR lag coeff.</th>
<th>SAC coeff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed-limit</td>
<td>0.254</td>
<td>0.272</td>
<td>0.26</td>
</tr>
<tr>
<td>Highways: Constant</td>
<td>96.456</td>
<td>38.421</td>
<td>83.897</td>
</tr>
<tr>
<td>Trunk roads: Constant</td>
<td>56.704</td>
<td>26.84</td>
<td>51.514</td>
</tr>
<tr>
<td>Collector roads: Constant</td>
<td>54.042</td>
<td>30.047</td>
<td>51.287</td>
</tr>
<tr>
<td>Distributor roads: Constant</td>
<td>38.941</td>
<td>24.363</td>
<td>38.95</td>
</tr>
<tr>
<td>Urban roads: Constant</td>
<td>30.332</td>
<td>20.189</td>
<td>30.428</td>
</tr>
<tr>
<td>Curveness</td>
<td>-3.592</td>
<td>-4.248</td>
<td>-3.597</td>
</tr>
<tr>
<td>Distributor: PuT stops density, r=0.5km</td>
<td>-0.083</td>
<td>-0.186</td>
<td>-0.143</td>
</tr>
<tr>
<td>Urban: PuT stops density, r=0.2km</td>
<td>-0.095</td>
<td>-0.073</td>
<td>-0.094</td>
</tr>
<tr>
<td>Highways: ln(popul, r=5km)</td>
<td>-7.978</td>
<td>-2.073</td>
<td>-5.962</td>
</tr>
<tr>
<td>Trunk roads: ln(popul, r=2km)</td>
<td>-3.602</td>
<td>-1.497</td>
<td>-3.15</td>
</tr>
<tr>
<td>Collector roads: ln(employm,r=2km,kernel)</td>
<td>-3.429</td>
<td>-2.04</td>
<td>-3.452</td>
</tr>
<tr>
<td>Distributor roads: ln(employm,r=1km,kernel)</td>
<td>-1.081</td>
<td>-0.881</td>
<td>-1.244</td>
</tr>
<tr>
<td>Urban roads: ln(employm,r=0.5km,kernel)</td>
<td>-0.501</td>
<td>-0.404</td>
<td>-0.554</td>
</tr>
<tr>
<td>Urban roads: Ramps' dens, r=1km</td>
<td>0.346*</td>
<td>-0.054</td>
<td>-0.049</td>
</tr>
<tr>
<td>Distributor roads: Road density, r=500 m</td>
<td>-0.271</td>
<td>-0.133</td>
<td>-0.256</td>
</tr>
<tr>
<td>Urban roads: Road density, r=100 m</td>
<td>-0.112</td>
<td>-0.093</td>
<td>-0.115</td>
</tr>
</tbody>
</table>

(length dummies)
Lu on travel time reliability in Germany
Map of some of the 635 elected routes (635)
Path analysis of the 3 parameter GE

Road density
Emp density
Pop density
VKTdensity
Intersections

Distribution Parameters

Skewness
mean
median

Observed
Unobserved

...
Path analysis – path chart

Intermediate variables:
- PearsonSkewness
- MedianTravelTime
- MeanTravelTime
- Std.TravelTime
- Percentile Skewness

Dependent variables:
- GEV_ξ
- GEV_μ
- GEV_σ

Observed variables:
- OriginVKTdensity
- ContourDiff
- RoadDensity1km
- Intersections
- IntersectionDen
- RoadDensity50m
- Den_p_ba07
- RoadLength
- PopulationDen
- ContourDiffDen
- Intersections
- OriginVKTdensity
- RoadLength
- RoadDensity50m
What is next?
What is next?

- Compare
 - Differences by model against counts, measurements
 - Differences between models
- Which (policy) changes can be captured
 - Fully
 - Partially
 - How to translate change into model variable change
- How often is the CBA recommendation different?
Questions?

www.ivt.ethz.ch
Literature and references

