Axhausen, K.W. (2014) Direct Demand Models: A Relevant Alternative In The Age Of Big Data, keynote at the "19th International Conference of the Hong Kong Society for Transportation Studies", Hong Kong, December 2014.

Direct Demand models: A relevant alternative In the age Of Big Data?

KW Axhausen

IVT ETH Zürich

December 2014

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Jeremy Hackney

Michael Bernard

Ming Lu

Georgios Sarlas

Issue at hand

Number and type of activities Sequence of activities

- Start and duration of activity
- Composition of the group undertaking the activity
- Expenditure division
- Location of the activity
 - Movement between sequential locations
 - Location of access and egress from the mean of transport
 - Parking type
 - Vehicle/means of transport
 - Route/service
 - Group travelling together
 - Expenditure division

Parcel use by type Land value by parcel

- Intensity of use
- Value added by the use
 - Wages paid to the workers
 - Rents paid to the landlords
- Environmental services rendered
- Aesthetic externalities
 - Space for movement between locations
 - Space for parking at the locations
 - Service level of public transport, taxi & sharing fleets
 - Home-work linkage
 - Home-education linkage

To agree to the (comprehensive) tracking required of:

- Public transport use (smart cards, face recognition via CCTV)
- Car use (ERP, automatic video analysis, blue tooth)
- Walking (face recognition via CCTV, phone identification)
- Movement (GSM records, GPS traces)

To wait for the models:

- (To be programmed)
- To be estimated
- To be implemented
- To be calibrated
- To be run and the results analysed
- To be run including a full/adequate risk analysis

What do we need ?

- Basic:
 - $\Delta volume_{ijmg}$
 - Δtravel time_{ijmg}
 - Aprice_{ijmg}
- Group g by
 - Income
 - (Distance)
 - Purpose
 - Age
 - Gender
 - Ethnicity

- Basic:
 - $\Delta volume_{im}$
 - Δspeed_{im}
- Advanced:

 - ∆volume_{ijm}
 ∆travel time_{ijm}

- Intensity of land use by
 - Car-owning population (by type)
 - Employment (by type)
- Network densities by
 - Node
 - Link capacity
 - Parking spaces
 - Seat capacity
- Prices (densities) of
 - Parking
 - Link

Average weekday peak hour speeds (Kanton Zürich)

Alternative approach and its model formulation

Spatial weighting matrix (2) – Spatial/network neighbour

Spatial neighbour:

 n closest links from centre of link

5 spatial neighbours (Euclidian distance)

Network neighbour:

- reachable links passing n (max.) intersections
- 2 intersections → ~5 neighbours (network distance)

Model	Best W-matrix	\overline{R}^2
Weighted least squares (WLS)	not needed	0.5347
Spatial error model (SEM)	W _a : <i>not needed</i> W _e : 3 network neighbours	0.5749
Spatial autoregressive model (SAR)	W _a : 4 network neighbours W _e : <i>not needed</i>	0.5518
General spatial model (SAC)	W _a : 4 network neighbours W _e : 3 network neighbours	0.5827

Sarlas on Swiss speeds

Case study

	SAR error	SAR lag	SAC
Explanatory variables	coeff.	coeff.	coeff.
Speed-limit	0.254	0.272	0.26
Highways: Constant	96.456	38.421	83.897
Trunk roads: Constant	56.704	26.84	51.514
Collector roads: Constant	54.042	30.047	51.287
Distributor roads: Constant	38.941	24.363	38.95
Urban roads: Constant	30.332	20.189	30.428
Curveness	-3.592	-4.248	-3.597
Distributor: PuT stops density,r=0.5km	-0.083	-0.186	-0.143
Urban: PuT stops density, r=0.2km	-0.095	-0.073	-0.094
Highways: In(popul, r=5km)	-7.978	-2.073	-5.962
Trunk roads: ln(popul,r=2km)	-3.602	-1.497	-3.15
Collector roads: In(employm,r=2km,kernel)	-3.429	-2.04	-3.452
Distributor roads: In(employm,r=1km,kernel)	-1.081	-0.881	-1.244
Urban roads: ln(employm,r=0.5km,kernel)	-0.501	-0.404	-0.554
Urban roads: Ramps' dens, r=1km	0.346*	-0.054	-0.049
Distributor roads: Road density, r=500 m	-0.271	-0.133	-0.256
Urban roads: Road density, r=100 m	-0.112	-0.093	-0.115
(length dummies)			21

Estimation and comparison of models of average v

Map of some of the 635 elected routes (635)

Path analysis of the 3 parameter GE

Observed variables

What is next?

What is next?

- Compare
 - Differences by model against counts, measurements
 - Differences between models
- Which (policy) changes can be captured
 - Fully
 - Partially
 - How to translate change into model variable change
- How often is the CBA recommendation different ?

www.ivt.ethz.ch

- Hackney, J., F. Marchal and K.W. Axhausen (2004) Monitoring a road system's level of service: The Canton Zurich floating car study 2003, paper presented at the 84th Annual Meeting of the Transportation Research Board, Washington, D.C., January 2005.
- Hackney, J.K., M. Bernard, S. Bindra and K.W. Axhausen (2007) Predicting road system speeds using spatial structure variables and network characteristics, *Journal of Geographical Systems*, **9** (4) 397-417.
- Lu, M. (2014) RP and SP Data-Based Travel Time Reliability Analysis, Ph.D. Thesis, ETH Zurich, Zurich.
- Sarlas, G. and K.W. Axhausen (2014) Localized speed prediction with the use of spatial simultaneous autoregressive models, *Arbeitsberichte Raum- und Verkehrsplanung*, **1017**, IVT, ETH Zurich, Zurich.