Survey challenges, modelling challenges

KW Axhausen

IVT
ETH
Zürich

March 2015
Survey challenges
Do we know the numbers? e.g. daily activities in Switzerland

![Graph showing the number of activities over average cohort age for different time periods.](image)

- Before 1910
- 1910-19
- 1920-29
- 1930-39
- 1940-49
- 1950-59
- 1960-69
- 1970-79
- After 1999

Number of Activities vs Average Cohort Age [Years]

IDEC 2015
What do we want to know?

Who travels

 when?
 where?
 with whom?
 how?
 for how long (space and time)?
 for what purpose?
 and spends how much?
Protocols and response
Surveys, observations are „talk“

Two speakers

managing their „image“

staying within the rules of talking

staying within their socially allocated/identified role

fulfilling social expectations

talk and report with/to each other

=>

„Maintaining the willingness of the respondent to report“

IDEC 2015
Response as a function of response burden @IVT, 2013

AAPOR response rate [%] vs A-priori estimate of the response burden

- **None**
- **Only motivation call**
- **Prior recruitment**
- **Prior recruitment & incentive**
- **Predicted**

IDEC 2015
Response is a non-random process

- Wave 1
- Wave 2
- Wave 3
- Non-response survey

- Observed
- True mean
- Sample
- Respondents

IDEC 2015
Known „error“ generating processes
Activities, movement and traces: A full example record

<table>
<thead>
<tr>
<th>Time</th>
<th>Home</th>
<th>Out of home</th>
<th>Movement</th>
<th>Phone/SMS</th>
<th>Email</th>
<th>Smart card</th>
<th>GPS</th>
<th>Bluetooth</th>
<th>WiFi</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IDECC 2015
Active/passive tracing: Many owners, locations, quality levels

Phone/SMS
Email
Smart card
GPS
Bluetooth
WiFi
CCTV

IDEA 2015
Filters imposed/suggested by the study: „Trips“

After “trip” filter:

Home
Out of home
Movement
Filters due to the respondent: Forgetting

Home
Out of home
Movement

After forgetting
Home
Out of home
Movement

IDEC 2015
Filters imposed by the respondent: Soft non-response

Home
Out of home
Movement

After soft non-response

Home
Out of home
Movement
Filters due to the respondent: Rounding

Home

Out of home

Movement

After rounding

Home

Out of home

Movement

IDEC 2015
What is left?

True

5 at home

9 Out of home

26 Stages,
11 trips,
1 subtour,
2 tours

After all processes

3 at home

2 Out of home

4 trips,
2 tours

IDEC 2015
What happens next?
Geocoding addresses

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal</td>
<td>Street addresses identifying the entry to the network</td>
</tr>
<tr>
<td>Best-case</td>
<td>Unambiguous street addresses</td>
</tr>
<tr>
<td>State of the art</td>
<td>Street address</td>
</tr>
<tr>
<td>State of practice</td>
<td>Street address/mid-street block/street corners; missing conversion of facility names</td>
</tr>
<tr>
<td>Still seen in practice</td>
<td>Arbitrary zonal centroid, e.g post offices</td>
</tr>
</tbody>
</table>

IDEC 2015
<table>
<thead>
<tr>
<th>Ideal</th>
<th>Complete GPS track for distance and times with pedestrian-networks added</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best-case</td>
<td>Minimal gaps, and state-of-the-art imputation of GPS tracks and modes</td>
</tr>
<tr>
<td>State of the art</td>
<td>SUE derived travel times and distances (navigation network)</td>
</tr>
<tr>
<td>State of practice</td>
<td>DUE derived travel times and distances (planning networks)</td>
</tr>
<tr>
<td>Still seen in practice</td>
<td>Shortest path on empty planning networks</td>
</tr>
</tbody>
</table>

IDEC 2015
What should we do?
Next steps

- Query what we really need for
 - Cost-benefit analysis
 - Planning of prices and services
 - Planning for the slow modes
 - Social accounting

- High-quality multi-modal surveys to establish the measurement errors (add bluetooth and wifi senders, noise profile)
- Error correction models
- Cross check against third party sources

- Treat survey data as indicators in a measurement model
- Treat traces as indicators in a measurement model
• Treat respondents as partners in a talk, discussion:

• Frame your request in a way which addresses them in a clearly defined social role (citizen, driver, customer, etc.)
• Account for their constraints (readability of text, full guidance through the forms, require no calculations – unless necessary, speak their ‘language’)
• Be as complex, as the topic warrants, requires, but not more so
• Don’t surprise them with unannounced requests
• Don’t ask them to do work you can do

• If appropriate, provide an incentive, acknowledgement
Modelling challenges
<table>
<thead>
<tr>
<th>Modelling challenges: The usual worries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error heterogeneity</td>
</tr>
<tr>
<td>Spatial correlations</td>
</tr>
<tr>
<td>Temporal correlations</td>
</tr>
<tr>
<td>Independence</td>
</tr>
<tr>
<td>Endogenity</td>
</tr>
<tr>
<td>Error of the second kind</td>
</tr>
<tr>
<td>Validation</td>
</tr>
<tr>
<td>Substance</td>
</tr>
</tbody>
</table>
Modelling challenges: Substance or t-tests?

Adapted from Zilliak and McCloskey (2008)
Modelling challenges: Substance or t-tests?

Effect size

large

small

1.96

t-stats

Yes, but anything new?

Adapted from Zilliak and McCloskey (2008)

IDEC 2015
Modelling challenges: Substance or t-tests?

Yes, but anything new?

Fair enough, but do we know why?

Adapted from Ziliak and McCloskey (2008)
Modelling challenges: Substance or t-tests?

Yes, but anything new?

Fair enough, but do we know why?

OK, but are there surprises?

Adapted from Zilliak and McCloskey (2008)

IDEC 2015
Modelling challenges: Substance or t-tests?

- Effect size
 - large
 - small

- t-stats
 - 1.96
 - Yes, but anything new?
 - Fair enough, but do we know why?
 - OK, but are there surprises?

Now, this is interesting

Adapted from Zilliak and McCloskey (2008)

IDEC 2015
Modelling challenges: Substance or t-tests?

- **Effect size**
 - large
 - small

- **t-stats**
 - 1.96

- **Now, this is interesting**
- **Yes, but anything new?**
- **OK, but are there surprises?**
- **Fair enough, but do we know why?**

Adapted from Ziliak and McCloskey (2008)

IDEC 2015
Choice modelling challenges
Choice modelling challenges: The usual worries

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error heterogeneity</td>
<td>Is it always checked?</td>
</tr>
<tr>
<td>Spatial correlations</td>
<td>Are they it always checked?</td>
</tr>
<tr>
<td>Independence</td>
<td>Do we check the correlations of the independent variables (sample) thoroughly enough?</td>
</tr>
<tr>
<td>Endogenity</td>
<td>Do we fully account for it? (sample selection)</td>
</tr>
<tr>
<td>Error of the second kind</td>
<td>Do you calculate it?</td>
</tr>
<tr>
<td>Validation</td>
<td>How often do we ask for out-of-sample tests?</td>
</tr>
<tr>
<td>Substance</td>
<td>or do we talk about t-tests?</td>
</tr>
</tbody>
</table>

IDEC 2015
Choice modelling challenges: less usual concerns

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error heterogeneity</td>
<td>Why don’t we check them?</td>
</tr>
<tr>
<td>Number of non-chosen alternatives</td>
<td>How much leverage do they have for your problem?</td>
</tr>
<tr>
<td>Number of choice sets</td>
<td>How stable are our estimates?</td>
</tr>
<tr>
<td>Capacity constraints</td>
<td>Do we check for their impact on the parameters? (attribute values of the known (non)chosen alternatives)</td>
</tr>
<tr>
<td>Unit of analysis</td>
<td>Do we have a MAUP problem?</td>
</tr>
</tbody>
</table>
Residuals: False positives of a membership model

Source: Kopp (Forthcoming)

IDEA 2015
Residuals: MCDEV model of fleet choice

Source: Jäggi (Forthcoming)

IDEC 2015
Number of non-chosen alternatives: routes

Source: Schüssler (2010)
Number of choice sets: residential choice

<table>
<thead>
<tr>
<th>MEASUREMENTS</th>
<th>DAT1</th>
<th>ESTIMATES</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DAT2</td>
<td>DAT3</td>
<td></td>
</tr>
<tr>
<td>Household</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIST_PREVLOC</td>
<td>-5.440</td>
<td>**</td>
<td>-7.070</td>
<td>**</td>
</tr>
<tr>
<td>DIST_WORK</td>
<td>-2.460</td>
<td>*</td>
<td>-3.220</td>
<td>*</td>
</tr>
<tr>
<td>ETA_PREVLOC</td>
<td>0.192</td>
<td>**</td>
<td>0.163</td>
<td>**</td>
</tr>
<tr>
<td>ETA_WORK</td>
<td>0.218</td>
<td>**</td>
<td>0.203</td>
<td>**</td>
</tr>
<tr>
<td>Accessibility</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIVACC_CAR</td>
<td>-0.233</td>
<td></td>
<td>-0.302</td>
<td>**</td>
</tr>
<tr>
<td>PTACC_NOCAR</td>
<td>0.555</td>
<td>**</td>
<td>0.541</td>
<td>**</td>
</tr>
<tr>
<td>Socioeconomic Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAME_HH_AGE_SHARE</td>
<td>0.782</td>
<td>**</td>
<td>0.684</td>
<td>**</td>
</tr>
<tr>
<td>R²</td>
<td>0.508</td>
<td></td>
<td>0.529</td>
<td></td>
</tr>
<tr>
<td>adj R²</td>
<td>0.500</td>
<td></td>
<td>0.522</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from: Schirmer (Forthcoming)
Accounting for consistency
Learning approach of the generic one-day transport model

Competition for slots on networks and in facilities

\[k(t,r,j)_{i,n} \]

Mental map

Activity scheduling

\[q_i \equiv (t,r,j)_{i,n} \]
Model estimation: $\beta_{i,o} = \beta_{i,n}$? $\beta_{i,n-1} = \beta_{i,n}$?

- Competition for slots on networks and in facilities
- Activity scheduling
- Mental map
- Parameter estimation

$k(t,r,j)_{i,n} = q_i \equiv (t,r,j)_{i,n}$
Model estimation: $\beta_{i,o} = \beta_{i,n}$? Route and mode

Konstante	Skalierungsparam.	Zeit	Preis	alfa f. Gem.F.

Kalibrationsschritt

Do we have a MAUP problem?
Do we have a MAUP-like problem for DCM?

• Location choice, obviously

• But also, mode choice
 • Stage
 • Trip
 • Sub-tour
 • Tour
 • Daily schedule
Do we have a MAUP-like problem for DCM?

<table>
<thead>
<tr>
<th></th>
<th>Stage</th>
<th>Trip</th>
<th>Subtour</th>
<th>Tour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of Time Walking</td>
<td>CHF/h</td>
<td>152</td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td>Value of Time Bike</td>
<td>CHF/h</td>
<td>194</td>
<td>39</td>
<td>43</td>
</tr>
<tr>
<td>Value of Time Car</td>
<td>CHF/h</td>
<td>135</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Value of Time PT</td>
<td>CHF/h</td>
<td>-30</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Value of Time PT access</td>
<td>CHF/h</td>
<td>819</td>
<td>15</td>
<td>22</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TT PT / TT Car</td>
<td>-</td>
<td>-4.46</td>
<td>12.33</td>
<td>4.07</td>
</tr>
<tr>
<td>TT Walk / Access time PT</td>
<td>-</td>
<td>0.19</td>
<td>1.83</td>
<td>1.19</td>
</tr>
<tr>
<td>Transfer / TT PT</td>
<td>min</td>
<td>-220.43</td>
<td>107.00</td>
<td>31.28</td>
</tr>
<tr>
<td>Interval / TT PT</td>
<td>-</td>
<td>0.96</td>
<td>7.00</td>
<td>3.47</td>
</tr>
<tr>
<td>Access time / TT PT</td>
<td>-</td>
<td>-27.10</td>
<td>7.67</td>
<td>3.02</td>
</tr>
</tbody>
</table>

Source: Schmujtz (2015)

IDEC 2015
Do we have a MAUP-like problem for DCM?

Source: Schmujtz (2015)
What should we do?
Next steps

• Become more systematic
 • Test for choice set size effects
 • Test for the stability of the estimates wrt choice set
 • Test for the stability wrt imputation of the attribute values

• Check for the right unit of analysis

• Check for the right set of explanatory variables
Questions?

www.ivt.ethz.ch
Jäggi, B. (Forthcoming) Decision modeling on the household level for energy, fleet choice and expenditure, Dissertation, ETH Zürich, Zürich.

Schuessler, N. (2010) Accounting for similarities between alternatives in discrete choice models based on high-resolution observations of transport behaviour, ETH Zürich, Zürich.
