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Motivation

Twitter - September, 2013 to February, 2014
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Huge amounts of spatial-temporal data are generated each day by social networks. This data being free and readily available for multiple monts in the case of Twitter, it is not more than a valid question how this data can be used. However, how does this data compare to data used traditionally in transport.

In this study we collected data for 8 months in Singapore. We find that a large number of users tweets, leading to an initial WOW!. But a closer look at the data reveals that 20,000 users tweet more than 10 times - compared to 77,000 users in the data set. These 30% users produce 3.40 million tweets. 

The 4-yearly Singapore travel survey includes approximately 30,000 persons; there are 3.4 million card identifiers in one week of travel data and 4 million daily journeys. Singapore itself counts 5.2 million residents.

Can activity locations be recognized?

How does this compare to statistics?



Methodology & Data
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This images shows a large part of Singapore – probably one third of the island. 

The tweets of a random user are shown; and well, this person tweets fairly often – it almost might be that he or she has a waterproof phone to tweet under the shower. While the data might look similar to a GPS trajectory, these are not order by space and / or time. From this, you can get a fairly good idea where this user goes and how he or she travels, main activity locations and maybe sporadically visited activity locations



Clusters of one individual

Kernel density estimation K-means clustering
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Background map: http://openstreetmap.org.
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We employed two techniques to recognize locations: k-means and kernel density estimation. With recursive k-means we find a high number of locations as each tweet is assigned to a cluster. With kernel density estimation we find two clusters. 


Clustering for all users

Travel Survey

Number of clusters
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So how does this compare to other data sources. In the travel survey we find that people are rather boring. 50% has two clusters in the travel survey; with kernel density estimation between these clusters.


Distance between clusters

Distance [km]
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If we look at the spatial seperatin between these clusters and compare this with travel survey data we find that distance distribution is similar. Due to the used criteria in the cluster methodology, we find that shorter distances underrepresented. This is something we were hoping to find. 


Population & employment statistics

Resident population versus unique Twitter users with a clusterin dgp i
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Work locations versus unique Twitter users with a cluster in dgp i
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In this part of the research we were aiming to get some kind of scaling factor. An aggregate comparison with population statistics shows that relatively less people tweet in residential areas. Most notably, we find high outliers in the main leisure district Orchard, the leisure island Sentoasa, the CBD and Singapore River.


Public transport smart card

Y Twitter KDE 10%
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Public transport smart card vs Twitter
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We put  the tweets of the recognized clusters in a sequence ordered by time – once a tweet is in a different zones, this is counted as a transition. This is compared to public transport data and travel survey data. In both cases, a high correlation is found between transitions found in traditional data sources and twitter data.


Summarizing

‘ Location-based social network data offers:
Insight in activity locations
Separation between clusters

Differences:
Due to population sub-sample? Probably yes.
Is social media used more at certain locations? Probably yes.
Scaling?

And:
Not as rich as travel survey -> activity duration, start times
Definition of cluster
Activity definition?
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Other purposes: real-time density of people; prediction of path of people


Questions

Michael van Eggermond
eggermond@ethz.ch
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Study area
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Data (2)

Twitter (September 2010, 2013 to February 27,

2014)

Household Interview Travel Survey 2008

Number of households 10,641
Number of persons 36,978
Public transport smart card data

Number of card identifiers 3,475,574
Number of journeys over 7 days 23,994,771
Singapore statistics

Total population 5,319,000
Total resident population 3,825,000
Land-area 2013 [km2] 716.1
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