Axhausen, K.W. (2015) Activity-based and agent-based modelling: Reflections on choice modelling, simulation and time horizons, presentation at the Nagoya University Transport and Environmental Dynamics Laboratory (NUTREND), June 2015.

Activity-based and agent-based modelling: Reflections on choice modelling, simulation and time horizons

KW Axhausen

IVT ETH Zürich

June 2015

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Activity-based versus agent-based approaches

Resolution	Agents, flows
Scheduling model Choice model	Trip, tour, daily chain (with breaks) DCM, rules&heuristics
Route choice	Integrated, external (with consistent valuations?)
Choice set construction	Explicit, implicit
Solution method	Whole population (& MSA or similar) Sample enumeration (& MSA or similar), co-evolutionary search
Schedule equilibrium	Yes, no

Resolution	Agents , flows
Scheduling model Choice model	Trip, tour , daily chain (with breaks) DCM, rules&heuristics
Route choice	Integrated, external without consistent valuations
Choice set construction	Explicit , implicit
Solution method	Whole population (& MSA or similar) Sample enumeration (& MSA or similar), co-evolutionary search
Schedule equilibrium	(Yes) no

Resolution	Agents, flows
Scheduling model Choice model	Trip, tour, daily chain (with breaks) DCM , rules&heuristics
Route choice	Integrated, external without consistent valuations
Choice set construction	Explicit , implicit
Solution method	Whole population (& MSA or similar) Sample enumeration (& MSA or similar), co-evolutionary search
Schedule equilibrium	Yes, none reported it yet

Resolution	Agents, flows
Scheduling model Choice model	Trip, tour, daily chain without breaks DCM, rules &heuristics
Route choice	Integrated with consistent valuations, external
Choice set construction	Explicit, implicit
Solution method	Whole population (& MSA or similar) Sample enumeration (& MSA or similar), co-evolutionary search
Schedule equilibrium	Yes, no

Data challenges

Do we know the numbers? e.g. drivers licence ownership

Activities, movement and traces: A full example record

What is left after the known error processes ?

Ideal	Street addresses identifying the entry to the network
Best-case	Unambiguous street addresses
State of the art	Street address
State of practice	Street address/mid-street block/street corners; missing conversion of facility names
Still seen in practice	Arbitrary zonal centroid, e,g post offices

Ideal	Complete GPS track for distance and times with pedestrian-networks added
Best-case	Minimal gaps, and state-of-the-art imputation of GPS tracks and modes
State of the art	SUE derived travel times and distances (navigation network)
State of practice	DUE derived travel times and distances (planning networks)
Still seen in practice	Shortest path on empty planning networks

Ideal	identify the awareness set of traveller P(i) > 0
Best-case	Identify a set including a) much of the awareness set and b) not too many outside (i.e. P(i) = 0)
State of the art	Fast construction algorithms (Route choice); A-priori exclusion based on constraints Latent-class models among the universal set
State of practice	Universal choice sets; sampling; choice of low resolution alternatives

Modelling challenges: The usual worries

Error heterogenity	Is it always checked ?
Spatial correlations Temporal correlations	Are they always checked ? Are they always checked ?
Independence	Do we check the correlations of the independent variables (sample) thoroughly enough?
Endogenity	Do we fully account for it ? (sample selection)
Error of the second kind	Do you calculate it ?
Validation	How often do we ask for out-of-sample tests?
Substance Nagoya 2015	or do we talk about t-tests ?

Modelling challenges: Substance or t-tests ?

Modelling challenges: Substance or t-tests?

Consistent LOS variables (travel times, rents, crowding, etc.)

Learning approach of the generic one-day transport model

Model estimation: beta_{i,o} = beta_{i,n}? Route and mode

Source: Vfrtic (2003)

Do we have a MAUP-like problem for DCM?

- Location choice, obviously via zonal resolution
- Route choice, obviously via network resolution
- Time of day choice, obviously via temporal resolution
- But also, mode choice
 - Stage
 - Trip
 - Sub-tour
 - Tour
 - Daily schedule

Swiss national travel diary 2010: Main mode by aggregation

		Stage	Trip	Subtour	Tour
Value of Time Walking	CHF/h	152	28	26	24
Value of Time Bike	CHF/h	194	39	43	40
Value of Time Car	CHF/h	135	25	30	27
Value of Time PT	CHF/h	-30	2	7	6
Value of Time PT access	CHF/h	819	15	22	22
TT PT / TT Car	-	-4.46	12.33	4.07	4.16
TT Walk / Access time PT	-	0.19	1.83	1.19	1.09
Transfer / TT PT	min	-220.43	107.00	31.28	32.92
Interval / TT PT	-	0.96	7.00	3.47	6.33
Access time / TT PT	-	-27.10	7.67	3.02	3.35

- Is daily mode choice the result of trade-off between LOS?
- Is daily mode choice purely the result of longer-term commitments?
- Is mode choice just the result of choosing standard 'scripts' or activity – location – mode packages ?
- What drives the commitments ?
 - Accessibility
 - Housing & modal packages
 - Self-selection by lifestyle
 - Self-selection by social commitments

MATSim

MATSim: A GNU public licence software project

Main partners:

- TU Berlin (Prof. Nagel)
- ETH Zürich & FCL SIngapore
- senozon (Dr. Balmer, Dr. Rieser)

Contributors, users, e.g.:

- TU Poznan
- University of Pretoria
- CASA, UCL, London
- Forschungszentrum Jülich

Equilibrium search in "ABM" & assignment combinations

MATSim today

Agent 1 Plan 1.1 H-W-H; 8:00, 17:00; C,C; Agent 2 Plan 2.1 H-W-H; 8:00, 17:00; C,C; Agent 3 Plan 3.1 H-W-H; 8:00, 17:00; C,C;

Agent 1 Plan 1.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 2 Plan 2.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 3 Plan 3.1	H-W-H; 8:00, 17:00; C,C;	35

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	35
Plan 3.2	H-W-H; 8:15, 17:30; C,C	

Agent 1 Plan 1.1	H-W-H; 8:00, 17:00; C,C;	100%
Agent 2 Plan 2.1	H-W-H; 8:00, 17:00; C,C;	100%
Agent 3 Plan 3.1 Plan 3.2	H-W-H; 8:00, 17:00; C,C; H-W-H; 8:15, 17:30; C,C;	35 New

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	35
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	60

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	35
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	60

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	New
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	100%
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	38%
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	62%

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	70
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	60

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	70
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	45
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	60
Plan 3.3	H-W-H; 7:30, 17:15; B,B	

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	36%
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	64%
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	100%
Agent 3		
Plan 3.1	H-W-H; 8:00, 17:00; C,C;	-45
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	60

Plan 3.3 H-W-H; 7:30, 17:15; B,B New

(The (worst) plan, more then memory allows, is deleted)

	Iteration 1	Iteration 2	Iteration 3
Agent 1 Agent 2	35	45 45	80 45
Agent 3	35	45 60	60
Mean	35	50	62

- Size of search space ~ Behavioural alternatives
- Rate of replanning (~ MSA)
- Size of the choice set ~ RAM
- Similarity of the daily schedules
- Integration into a log-sum term

Number and type of activities Sequence of activities

- Start and duration of activity
- Composition of the group undertaking the activity
- Expenditure division
- Location of the activity
 - Movement between sequential locations
 - Location of access and egress from the mean of transport
 - Parking type
 - Vehicle/means of transport
 - Route/service
 - Group travelling together
 - Expenditure division

Current Vickrey-type utility function

$$U_{plan} = \sum_{i=1}^{n} U_{act,i} + \sum_{i=2}^{n} U_{trav,i-1,i}$$

$$U_{act,i} = U_{dur,i} + U_{late.ar,i}$$

Future whole day utility function?

Time elements	linear
Travel time	By mode and type of service;
	by crowding level
	by comfort level (parking search, stop&go)
 Transfer penalty 	
Late penalty	by activity type
Activity time	log (Vickrey) or S-shape (Joh) (all, individual)
Minimum duration	by activity type
 Preferred duration 	by activity type
 Duration 	by time of day (might go away if
	participation is included)
Destination	Attractiveness, Value for money
Expenditure	by activity
Nagoya 2015	by mode/type of service

Current status

© Marcel Rieser, senozon

Known implementations: About 35 (Europe, Asia, US) About 25 (including some beyond Research groups: transport) Uses: Research Some initial commercial uses Some policy consulting Software: Last reimplementation in 2012/13 Stable API Daily tests JAVA

Current progress: Singapore

Schedule detail possibilities (in current stable MATSim)

Number and type of activities Sequence of activities

- Start and duration of activity
- Composition of the group undertaking the activity (Kowald, Tan, Fourie)
- Expenditure division
- Location of the activity

(Horni)

(Feil, Balac)

(Ordonez)

- Movement between sequential locations
 - Location of access and egress from the mean of transport
 - Parking search and type
 - Vehicle/means of transport
 - Route/service
 - Group travelling together
 - Expenditure division

(Waraich) (Ciari, Bösch) (Chakirov) (Dubernet, Fourie)

Recent and current developments and applications at ETH

Integration of walking Multi-level network resolution

New modes Escalators and 'walkways'

Autonomous vehicles Include a 'gopher mode'

Car sharing: Sta

Parking search

Evacuation

Station-based car-sharing Free-float car sharing

Specialised within day replanning In conjunction with recent SC experiments

Specialised within-day replanning

- Econometric estimation of the whole day scoring function
- Increase the size and variance of the implicit choice set
- Link to a log-sum formulation
- Accelerating the iterative equilibrium search
- Gridlock modeling (& stability of equilibrium)
- Generation of artificial social networks in the agentpopulation

- Consistency of the LOS variables in model estimation
- Integrating the capacity constraints
- 'MAUP' at different levels and choice dimensions
- Standards for choice set size
- Daily versus non-daily choices (Overreach of the NL models ?)
- How many robustness test should we report in choice modelling papers?

MATSim @ ETHZ, TU Berlin, FCL, Senozon (past & present)

Prof. Kay Axhausen Milos Balac Dr. Michael Balmer Henrik Becker Patrick Bösch Dr. David Charypar Dr. Nurhan Cetin Artem Chakirov Dr. Yu Chen Dr. Francesco Ciari Dr. Christoph Dobler Thibaut Dubernet Dr. Alexander Erath

Dr. Matthias Feil Dr. Gunnar Flötteröd **Pieter Fourie** Dr. Christian Gloor Dr. Dominik Grether Dr. Jeremy K. Hackney Dr. Andreas Horni **Dr. Johannes Illenberger** Dr. Gregor Lämmel Nicolas Lefebyre Prof. Kai Nagel Dr. Konrad Meister Manuel Moyo

Kirill Müller Dr. Andreas Neumann Dr. Thomas Nicolai Benjamin Kickhöfer Sergio Ordonez **Dr. Bryan Raney** Dr. Marcel Rieser Dr. Nadine Rieser Lijun Sun **Alexander Stahel** Dr. David Strippgen **Michael Van Eggermond** Dr. Rashid Waraich Michael Zilske

www.matsim.org

www.ivt.ethz.ch www.futurecities.ethz.ch

www.senozon.com

^{edited by} Andreas Horni, Kai Nagel, Kay W. Axhausen

Chikaraishi, M., A. Fujiwara, F. Nishikawa, H. Seya and J. Zhang (2015) Modeling shopping behavior in a neighborhood with endogenous representation of retail attractiveness, presentation at the The 4th International BinN research seminar "Dynamic modelling based on bounded rationality to understand diversifying travel behavior", University of Tokyo, June 2015.

De Palma, A., N. Picard and P. Waddell (2007) Discrete choice models with capacity constraints: An empirical analysis of the housing market of the greater Paris region, Journal of Urban Economics, 62 (2) 204-230.

Manski, C.F. (1993) Identification of Endogenous Social Effects: The Reflection Problem. The Review of Economic Studies 6o, 531-542.

Rust, J. (1987) Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher, Econometrica 55, 999-1033.

Schmutz, Simon (2015) Auswirkung von analytische Einheiten und Aggregationsregeln auf die Verkehrsmittelwahlmodellierung, MSc thesis, Zürich, January 2015.

Schuessler, N. (2010) Accounting for similarities between alternatives in discrete choice models based on high-resolution observations of transport behaviour, ETH Zürich, Zürich.

Vrtic, M. (2003) Simultanes Routen- und Verkehrsmittelwahlmodell, PhD Dissertation, Fakultät für Verkehrswissenschaften, TU Dresden, Dresden.

Walker, J.L., Ehlers, E., Banerjee, I., Dugundji, E.R. (2011) Correcting for endogeneity in behavioral choice models with social influence variables. *Transportation Research Part A: Policy and Practice* **45**, 362-374.

Zilliak, S. and D. McCloskey (2008) *The Cult of Statistical Significance: How the Standard Error Costs Us Jobs, Justice, and Lives,* University of Michigan Press, Ann Arbor.