Axhausen, K.W. (2015) MATSim: An agent-based framework of travel demand and traffic flow, presentation at the CICTP2015, Pejing, July 2015.

•

MATSim: An agent-based framework of travel demand and traffic flow

KW Axhausen

IVT ETH Zürich

July 2015

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Activity-based versus agent-based approaches

Resolution	Agents, flows
Scheduling model Choice model	Trip, tour, daily chain (with breaks) DCM, rules&heuristics
Route choice	Integrated, external (with consistent valuations?)
Choice set construction	Explicit, implicit
Solution method	Whole population (& MSA or similar) Sample enumeration (& MSA or similar), co-evolutionary search
Schedule equilibrium	Yes, no

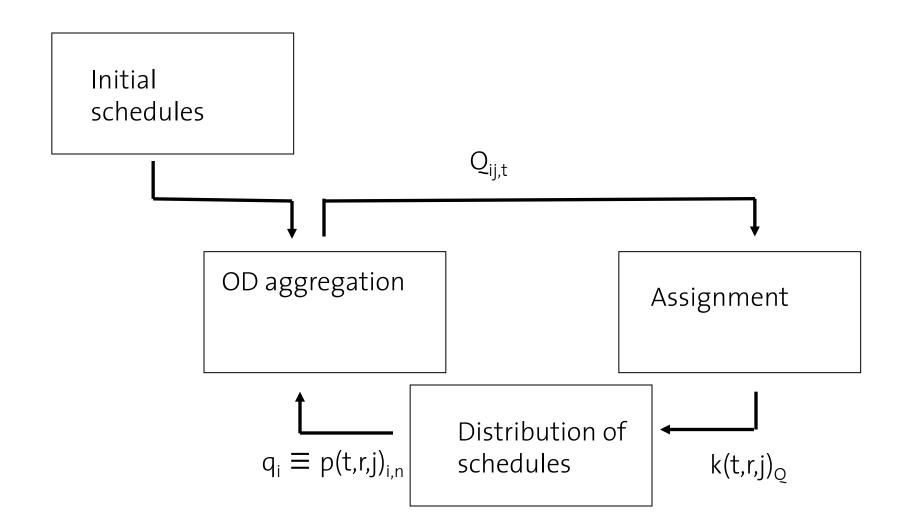
Resolution	Agents, flows
Scheduling model Choice model	Trip, tour , daily chain (with breaks) DCM, rules&heuristics
Route choice	Integrated, external without consistent valuations
Choice set construction	Explicit , implicit
Solution method	Whole population (& MSA or similar) Sample enumeration (& MSA or similar), co-evolutionary search
Schedule equilibrium	(Yes) , no

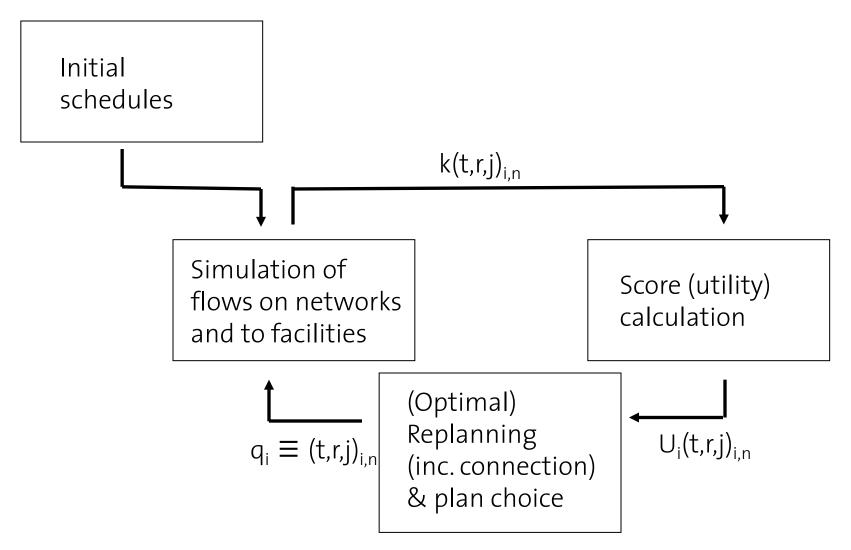
Resolution	Agents, flows
Scheduling model Choice model	Trip, tour, daily chain (with breaks) DCM , rules&heuristics
Route choice	Integrated, external without consistent valuations
Choice set construction	Explicit , implicit
Solution method	Whole population (& MSA or similar) Sample enumeration (& MSA or similar), co-evolutionary search

Resolution	Agents, flows
Scheduling model Choice model	Trip, tour, daily chain without breaks DCM, rules &heuristics
Route choice	Integrated with consistent valuations, external
Choice set construction	Explicit, implicit
Solution method	Whole population (& MSA or similar) Sample enumeration (& MSA or similar), co-evolutionary search
Schedule equilibrium	Yes, no

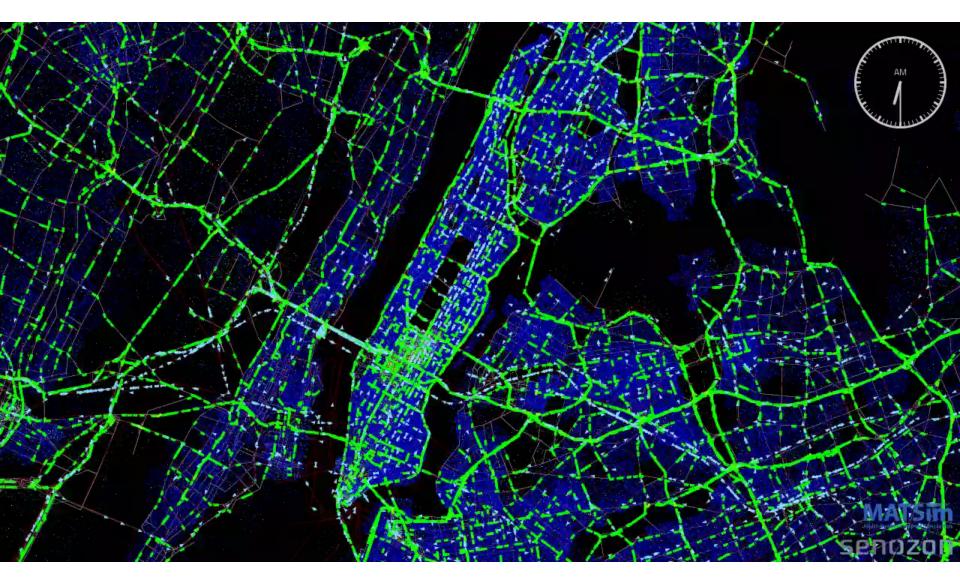
MATSim

MATSim: A GNU public licence software project


Main partners:


- TU Berlin (Prof. Nagel)
- ETH Zürich & FCL SIngapore
- senozon (Dr. Balmer, Dr. Rieser)

Contributors, users, e.g.:


- TU Poznan
- University of Pretoria
- CASA, UCL, London
- Forschungszentrum Jülich

Equilibrium search in "ABM" & assignment combinations

MATSim today

Agent 1 Plan 1.1 H-W-H; 8:00, 17:00; C,C; Agent 2 Plan 2.1 H-W-H; 8:00, 17:00; C,C; Agent 3 Plan 3.1 H-W-H; 8:00, 17:00; C,C;

Agent 1 Plan 1.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 2 Plan 2.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 3 Plan 3.1	H-W-H; 8:00, 17:00; C,C;	35

Agent 1 Plan 1.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 2 Plan 2.1	H-W-H; 8:00, 17:00; C,C;	35
Agent 3 Plan 3.1 Plan 3.2	H-W-H; 8:00, 17:00; C,C; H-W-H; 8:15, 17:30; C,C	35

Agent 1 Plan 1.1	H-W-H; 8:00, 17:00; C,C;	100%
Agent 2 Plan 2.1	H-W-H; 8:00, 17:00; C,C;	100%
Agent 3 Plan 3.1 Plan 3.2	H-W-H; 8:00, 17:00; C,C; H-W-H; 8:15, 17:30; C,C;	35 New

Agent 1 Plan 1.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 2 Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3 Plan 3.1 Plan 3.2	H-W-H; 8:00, 17:00; C,C; H-W-H; 8:15, 17:30; C,C;	35 <mark>60</mark>

Agent 1 Plan 1.1 Plan 1.2	H-W-H; 8:00, 17:00; C,C; H-W-H; 8:00, 17:00; B,B;	45
Agent 2 Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3 Plan 3.1 Plan 3.2	H-W-H; 8:00, 17:00; C,C; H-W-H; 8:15, 17:30; C,C;	35 60

Agent 1 Plan 1.1 Plan 1.2	H-W-H; 8:00, 17:00; C,C; H-W-H; 8:00, 17:00; B,B;	45 <mark>New</mark>
Agent 2 Plan 2.1	H-W-H; 8:00, 17:00; C,C;	100%
Agent 3 Plan 3.1 Plan 3.2	H-W-H; 8:00, 17:00; C,C; H-W-H; 8:15, 17:30; C,C;	<mark>38%</mark> 62%

Agent 1 Plan 1.1 Plan 1.2	H-W-H; 8:00, 17:00; C,C; H-W-H; 8:00, 17:00; B,B;	45 70
Agent 2 Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3 Plan 3.1 Plan 3.2	H-W-H; 8:00, 17:00; C,C; H-W-H; 8:15, 17:30; C,C;	45 60

Agent 1 Plan 1.1 Plan 1.2	H-W-H; 8:00, 17:00; C,C; H-W-H; 8:00, 17:00; B,B;	45 70
Agent 2 Plan 2.1	H-W-H; 8:00, 17:00; C,C;	45
Agent 3 Plan 3.1 Plan 3.2	H-W-H; 8:00, 17:00; C,C; H-W-H; 8:15, 17:30; C,C;	45 60
Plan 3.2 Plan 3.3	H-W-H; 7:30, 17:15; B,B	00

Agent 1		
Plan 1.1	H-W-H; 8:00, 17:00; C,C;	36%
Plan 1.2	H-W-H; 8:00, 17:00; B,B;	64%
Agent 2		
Plan 2.1	H-W-H; 8:00, 17:00; C,C;	100%
Agent 3		
Plan 3.1		-45
Plan 3.2	H-W-H; 8:15, 17:30; C,C;	60

Plan 3.3 H-W-H; 7:30, 17:15; B,B New

(The (worst) plan, more then memory allows, is deleted)

	Iteration 1	Iteration 2	Iteration 3
Agent 1 Agent 2 Agent 3	35 35 35	45 45 60	80 45 60
Mean	35	50	62

- Size of search space ~ Behavioural alternatives
- Rate of replanning (~ MSA)
- Size of the choice set ~ RAM
- Similarity of the daily schedules
- Integration into a log-sum term

Number and type of activities Sequence of activities

- Start and duration of activity
- Composition of the group undertaking the activity
- Expenditure division
- Location of the activity
 - Movement between sequential locations
 - Location of access and egress from the mean of transport
 - Parking type
 - Vehicle/means of transport
 - Route/service
 - Group travelling together
 - Expenditure division

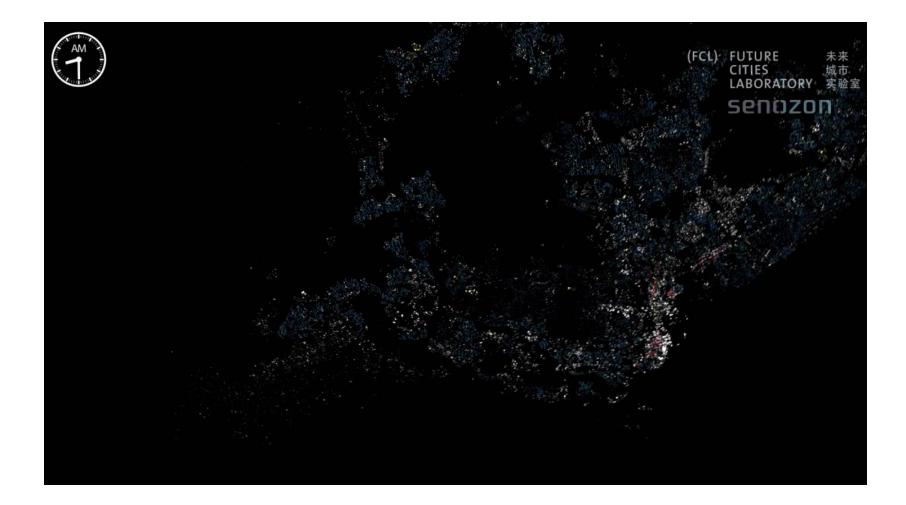
Current Vickrey-type utility function

$$U_{plan} = \sum_{i=1}^{n} U_{act,i} + \sum_{i=2}^{n} U_{trav,i-1,i}$$

$$U_{act,i} = U_{dur,i} + U_{late.ar,i}$$

Future whole day utility function?

Time elementsTravel timeTransfer penalty	linear By mode and type of service; by crowding level by comfort level (parking search, stop&go)
 Late penalty 	by activity type
Activity timeMinimum durationPreferred durationDuration	log (Vickrey) or S-shape (Joh) (all, individual) by activity type by activity type by time of day (might go away if participation is included)
Destination Expenditure COTA 2015	Attractiveness, Value for money by activity by mode/type of service


Current status

© Marce QiBs 20 the nozon

Known implementations: About 35 (Europe, Asia, US) About 25 (including some beyond Research groups: transport) Uses: Research Some initial commercial uses Some policy consulting Software: Last reimplementation in 2012/13 Stable API Daily tests JAVA

Current progress: Singapore

Schedule detail possibilities (in current stable MATSim)

Number and type of activities Sequence of activities

- Start and duration of activity
- Composition of the group undertaking the activity **(Kowald,**
- Expenditure division
- Location of the activity

(Horni)

(Feil, Balac)

Tan, Fourie)

(Ordonez)

- Movement between sequential locations
 - Location of access and egress from the mean of transport
 - Parking search and type
 - Vehicle/means of transport
 - Route/service
 - Group travelling together
 - Expenditure division

COTA 2015

(Waraich) (Ciari, Bösch) (Chakirov) (Dubernet, Fourie)

Recent and current developments and applications at ETH

Integration of walking Multi-level network resolution

New modes Escalators and 'walkways'

Autonomous vehicles Include a 'gopher mode'

Car sharing: Station-based car-sharing Free-float car sharing

Parking search

Specialised within day replanning In conjunction with recent SC experiments

Specialised within-day replanning

COTA 2015

Evacuation

- Econometric estimation of the whole day scoring function
- Increase the size and variance of the implicit choice set
- Link to a log-sum formulation
- Accelerating the iterative equilibrium search
- Gridlock modeling (& stability of equilibrium)
- Generation of artificial social networks in the agentpopulation

MATSim @ ETHZ, TU Berlin, FCL, Senozon (past & present)

Prof. Kay Axhausen Milos Balac Dr. Michael Balmer Henrik Becker Patrick Bösch Dr. David Charypar Dr. Nurhan Cetin Artem Chakirov Dr. Yu Chen Dr. Francesco Ciari Dr. Christoph Dobler **Thibaut Dubernet** Dr. Alexander Erath

Dr. Matthias Feil Dr. Gunnar Flötteröd **Pieter Fourie** Dr. Christian Gloor Dr. Dominik Grether Dr. Jeremy K. Hackney Dr. Andreas Horni **Dr. Johannes Illenberger** Dr. Gregor Lämmel Nicolas Lefebyre Prof. Kai Nagel Dr. Konrad Meister Manuel Moyo

Kirill Müller Dr. Andreas Neumann Dr. Thomas Nicolai Benjamin Kickhöfer Sergio Ordonez **Dr. Bryan Raney** Dr. Marcel Rieser Dr. Nadine Rieser Lijun Sun Alexander Stahel Dr. David Strippgen **Michael Van Eggermond** Dr. Rashid Waraich Michael Zilske

www.matsim.org

www.ivt.ethz.ch www.futurecities.ethz.ch

www.senozon.com

^{edited by} Andreas Horni, Kai Nagel, Kay W. Axhausen

