Heterogeneous values of time in a multimodal context: An activity- and agent-based simulation approach

Artem Chakirov

14th International Conference on Travel Behaviour Research, Windsor
July 2015
Motivation and context

Heterogeneous user preferences (e.g. value of time, activity scheduling, perception of comfort, physical conditions) matter:

- Equity and redistribution effects
- Mean value is not always representative (Winners vs. Losers)
- Self-organization effects

Challenges

- Modelling of multiple heterogeneity dimensions
- Lack of data

Alternative approach

- Agent-based simulation with Stochastic User Equilibrium (e.g. MATSim)
MATSim: Multi-Agent Transport Simulation

- Stochastic User Equilibrium
- Boundary/initial conditions (land use, transport network, demographics, etc.)
- List of choice dimensions that are adapted
- Parallel Queue Model Approach and **fully integrated public transport simulation**
- Time step: 1sec over 24h period

Choice dimensions
- Route choice
- Mode Choice
- Departure time choice
- (Secondary activity-location choice)

Constraints
- Flow and storage capacity of the network
- Bus vehicle capacity
- Dwell times

Initial demand modeling

Supply data
Facilities
Population
Demand

Initial demand

Execution
Scoring
Replanning

Relaxed demand

Relaxation process

Evaluation
Heterogeneity in VOT

\(\alpha \): Value of Time \(\beta \): Schedule delay early \(\gamma \) – Schedule delay late

Proportional Heterogeneity: \(\alpha, \beta, \gamma \) vary proportionally \(\Rightarrow \mu, \eta, \lambda = \text{const.} \)
- usually strongly income dependent

\(\alpha \) - Heterogeneity: \(\mu = \frac{\alpha}{\beta} \) varies \((\eta = \text{const.}) \)
e.g. type of job, family situation

\(\gamma \) - Heterogeneity: \(\eta = \frac{\gamma}{\beta} \) and \(\lambda = \frac{\alpha}{\gamma} \) vary \((\mu = \text{const.}) \)
e.g. shift workers vs. flexible hours

\[
\mu = \frac{\alpha}{\beta} \quad \eta = \frac{\gamma}{\beta} \quad \lambda = \frac{\alpha}{\gamma}
\]

Introducing Heterogeneous Values of Time in MATSim

Marginal Value of Time in an activity – based context:

\[mVTTS_a = \frac{mUTTS_a}{\beta_{a}^{mon}} = -\beta_{a}^{trv(i)} + \beta_{a}^{act(i+1)} \cdot \frac{t_{typ(i+1)}}{t_{i+1}} \]

Using continuous interaction from Axhausen et al. (2008):

\[f(y, x) = \beta_{x} \left(\frac{y}{\hat{y}} \right)^{\lambda_{y,x}} x, \]

\[mVTTS = \frac{-\beta_{mode}^{trv} + \beta_{act}^{inc} \cdot \frac{t_{typ}}{t}}{\beta_{a}^{mon}} \]

\[= \frac{-\beta_{mode}^{trv} + \beta_{act}^{inc} \cdot \frac{t_{typ}}{t}}{\beta_{mon} \left(\frac{inc}{inc} \right)^{\lambda_{inc,mon}}} \]

\[= \frac{-\beta_{TT,mode}^{inc} \left(\frac{inc}{inc} \right)^{-\lambda_{inc,mon}} + \beta_{act}^{inc} \left(\frac{inc}{inc} \right)^{-\lambda_{inc,mon}} \cdot \frac{t_{typ}}{t}}{\beta_{mon}}. \]

Heterogeneity in Values of Time as a consequence of different marginal utilities for activity performance and disutility of traveling. Marginal utility of money stays constant.
Value of Time and Schedule Delay in MATSim

\[mVTT_S_a = \frac{mUTT_S_a}{\beta_m^{mon}} = -\beta_{trv}^{trv(i)} + \beta_a^{act(i+1)} \cdot \frac{t_{trv(i+1)}}{t_{i+1}} \]

\[\alpha = mVTT_S \cdot \beta^{mon} = -\beta_{trv} + \beta^{act} \]

\[\beta = \beta^{act} \]

\[\gamma = \beta^{late} \]

Proportional heterogeneity

\[\alpha = -\beta_{trv} + \beta^{act} = -\beta_{cost}^{trv} \cdot \left(\frac{inc}{inc} \right)^{-\lambda_{inc,mon}} + \beta_{const}^{act} \cdot \left(\frac{inc}{inc} \right)^{-\lambda_{inc,mon}} \]

\[\beta = \beta^{act} = \beta_{const}^{act} \cdot \left(\frac{inc}{inc} \right)^{-\lambda_{inc,mon}} \]

\[\gamma = \beta_{const}^{late} \cdot \beta^{act} = \beta_{const}^{late} \cdot \beta_{const}^{act} \cdot \left(\frac{inc}{inc} \right)^{-\lambda_{inc,mon}} \]

\[\alpha - \text{heterogeneity} \]

\[\alpha = -\beta_{trv} + \beta^{act} = -\beta_{cost}^{trv} \cdot \left(\frac{inc}{inc} \right)^{-\lambda_{inc,mon}} + \beta_{const}^{act} \cdot \left(\frac{inc}{inc} \right)^{-\lambda_{inc,mon}} \]

\[\beta = \zeta_{\beta} \cdot \beta^{act} = \zeta_{\beta} \cdot \beta_{const}^{act} \cdot \left(\frac{inc}{inc} \right)^{-\lambda_{inc,mon}} \]

\[\gamma = \eta \cdot \beta \]

\[\gamma - \text{heterogeneity} \]

\[\alpha = -\beta_{trv} + \beta^{act} = -\beta_{cost}^{trv} \cdot \left(\frac{inc}{inc} \right)^{-\lambda_{inc,mon}} + \beta_{const}^{act} \cdot \left(\frac{inc}{inc} \right)^{-\lambda_{inc,mon}} \]

\[\beta = \beta^{act} = \beta_{const}^{act} \cdot \left(\frac{inc}{inc} \right)^{-\lambda_{inc,mon}} \]

\[\gamma = \zeta_{\gamma} \cdot \beta^{act} = \zeta_{\gamma} \cdot \beta_{const}^{act} \cdot \left(\frac{inc}{inc} \right)^{-\lambda_{inc,mon}} \]
Simulation setup: Corridor scenario

- 20km corridor with bus network (Bus stop every 600m)
- Home location density
- Work locations density

- 8000 agents
- Home – Work – Home activity chains
- Distance between bus stops: 600m
- Bus headway: 5 min
- Bus capacity: 90 (MAN NL323F)
- Bus length: 7.5m
- Dwell time per passenger: 1 sec
Behavioural and monetary parameters and activity constrains

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_{act}</td>
<td>$+ 0.48 \text{ utlis/h}$</td>
</tr>
<tr>
<td>$\beta_{tr,car}$</td>
<td>$- 0.48 \text{ utlis/h}$</td>
</tr>
<tr>
<td>$\beta_{tr,pt}$</td>
<td>-0.66 utlis/h</td>
</tr>
<tr>
<td>$\beta_{tr,walk}$</td>
<td>-1.401 utlis/h</td>
</tr>
<tr>
<td>$\beta_{wait,pt}$</td>
<td>-1.458 utlis/h</td>
</tr>
<tr>
<td>β_{cost}</td>
<td>$-0.062 \text{ utlis/$}$</td>
</tr>
<tr>
<td>$\beta_{0,car}$</td>
<td>-0.562 utlis</td>
</tr>
<tr>
<td>$\beta_{0,pt}$</td>
<td>-0.124 utlis</td>
</tr>
<tr>
<td>$\beta_{0,walk}$</td>
<td>0.0 utlis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT Fare</td>
<td>$2 \text{ $/trip}$</td>
</tr>
<tr>
<td>Car cost per km</td>
<td>$0.2 \text{ $/km}$</td>
</tr>
<tr>
<td>Parking cost</td>
<td>$6 \text{ $/trip} (= 12 \text{ $/day})$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Typical duration</th>
<th>Opening time</th>
<th>Latest start time</th>
<th>Earliest end time</th>
<th>Closing time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>14h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Work</td>
<td>9.5h</td>
<td>8.00am</td>
<td>9.00am</td>
<td>6.00pm</td>
<td>7.00pm</td>
</tr>
</tbody>
</table>

Income-based heterogeneity in VOT

Modeling of value of time heterogeneity based on household income: continuous interaction from Axhausen et al. (2008):

\[f(y, x) = \beta_x \left(\frac{y}{\hat{y}} \right)^{\hat{y}, x} x, \]

Axhausen et al. (2008) estimate $\lambda = 0.1697$ for $\left(\frac{\text{inc}}{\text{inc}_\text{mon}}\right)^{\lambda_{\text{inc},\text{mon}}}$.

Different degrees of heterogeneity are tested for $\eta^* \lambda_{\text{inc},\text{mon}}$ with $n = 0, 1, 2, 3, 5$.

Adding α heterogeneity

Joint probability density distribution for VOT α and α / β

$n = 1$

$n = 3$
Adding γ heterogeneity

Joint probability density distribution for schedule delay late γ and γ/β
Congestion pricing: first – best toll approximation

$$\text{External cost: } C(t_0) \approx t^e(t_0) - \tau^\text{free} - t_0.$$

Queue encountered when entering the link at t_0 to dissolve at $t^e(t_0)$

Time bins in MATSim implementation: 5 min
Economic evaluation

Social Welfare = Consumer Surplus + Toll Revenue + PT Fare Revenue + PT Operation Cost

Logsum (Expected Maximum Utility)

\[V_J = \frac{1}{\mu} \cdot \ln \sum_{j=1}^{J} e^{\mu V_j} \]

Choice Set Generation:
Chosen alternative, activity shift +1hr, -1hr, activity extension +1hr, -1hr, mode shift (total of 14 alternatives)
Evaluation using a pseudo – simulation approach

Bus operation cost according to Australian Transport Council (2006)

\[C = (d_{vkm} \cdot c_{vkm} + t_{vh} \cdot c_{vh}) \cdot O + N_v \cdot c_{vday} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_{vkm}</td>
<td>0.006 \cdot \text{capacity} + 0.513 [$/vkm]$</td>
</tr>
<tr>
<td>c_{vday}</td>
<td>1.6064 \cdot \text{capacity} + 22.622 [$/vday]$</td>
</tr>
<tr>
<td>c_{vh}</td>
<td>33 [$/vh]$</td>
</tr>
<tr>
<td>O</td>
<td>1.21</td>
</tr>
</tbody>
</table>
Social Welfare and Consumer Surplus before and after pricing

Social welfare

No bus service

2 min bus headway

Consumer surplus
Changes in Welfare and Consumer Surplus after congestion pricing

Social welfare

Consumer surplus
Changes in Consumer Surplus vs. Income

No bus service

2 min headway
Spread of consumer surplus changes

(a) α heterogeneity, no bus service

(b) α heterogeneity, 2 min headway
Changes in Consumer Surplus vs. α and β / α and γ

α heterogeneity, $n = 5$

γ heterogeneity, $n = 5$
Key Findings and Outlook

- Significant self-organization effect with alternative mode of transport and heterogeneous user preferences
- Relative welfare gains from congestion pricing diminishes with increasing user heterogeneity given availability of alternative mode
- Changes in consumer surplus are strongly dependent on availability and service level of alternatives
- Public transport users can be the one who loose from congestion pricing in case mode shift leads to crowding and associated delays

Future Work

- Transfer to a realistic medium to large scale scenario (e.g. Sioux Falls, Singapore)
- Questions of spatial inequality
- Combination of different heterogeneity characteristics (Value of Time, Schedule Delay, Trip Distances, Activity Types)