Agent Based Modeling in Transportation: the example of MATSim

Dr. Francesco Ciari

September 24th, 2015

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

MATSim at a glance

- Implementation of a fully **agent-based** approach as part of a transport modeling tool
- **Open source** framework written in **Java** (GNU License)
- Started ~10 years ago, community is growing
- Developed by Teams at ETH Zurich, TU Berlin and Senozon AG
- <u>www.matsim.org</u>

MATSim applications around the world

© Marcel Rieser, senozon

MATSim Singapore 60FPS NEW TITLES.mkv

(author: Pieter Fourie)

Evaluation of a road pricing policy in Zurich:

• How would a toll to enter the city center between 3 and 7 pm affect daily traffic inside and outside the area?

Toll links

Traffic over the day

(author: Kai Nagel)

- Car Travel: base case

• Car Travel: city toll

Toll vs. no-toll

Evaluation of a new bypass in Zurich's west side:

• Who would win and lose with the new infrastructure?

Current network

Colours: Allowed Speed; Thickness: # of Lanes

New network with bypass

Colours: Allowed Speed; Thickness: # of Lanes

New network with bypass and additional measures

Colours: Allowed Speed; Thickness: # of Lanes

Daily Volumes: Difference with current situation

Bypass **without** additional measures

Bypass with additional measures

Daily Volumes: Difference with current situation

Bypass **without** additional measures

Bypass with additional measures

Winners and Losers: Travel Time

Winners and Losers: MATSim Score (Utility)

Case Study 3 – Free-floating Carsharing in Zürich

Evaluation of a new free-floating carsharing service:

• How would different pricing strategies affect demand for a newly introduced free-floating carsharing?

	Scenario I	Scenario II	Scenario III	Scenario IV	Scenario V
SB Time Fee	2.80 SFr./h	2.80 SFr./h	2.80 SFr./h	2.80 SFr./h	2.80 SFr./h
SB Distance Fee	0.60 SFr./Km	0.60 SFr./Km	0.60 SFr./Km	0.60 SFr./Km	0.60 SFr./Km
FF Time Fee	_	0.37 SFr./min	0.185 SFr./min	0.185 SFr/min (10-16) 0.37 SFr/min (rest of day)	0.185 SFr/min (16-10) 0.37 SFr/min (rest of day)

Carsharing Vehicles in Motion

Scenario V - Half Price 4pm to 10am

Scenario III - FF Half Price

Rentals spatial patterns

Purpose of the rental

	Scenario I	Scenario II	Scenario III	Scenario IV	Scenario V
RT CS	3h14'57"	3h29'36"	3h07'49"	3h37'12"	3h21'22"
FF CS	-	6h21'10"	6h40'43"	6h09'14"	6h52'02"
Car	5h37'16"	5h37'24"	5h37'32"	5h37'59"	5h37'25"

Questions?

MATSim @ ETHZ, TU Berlin, FCL, Senozon (present)

Prof. Kay Axhausen Milos Balac Dr. Michael Balmer Henrik Becker Patrick Bösch **Artem Chakirov** Dr. Francesco Ciari **Dr. Christoph Dobler Thibaut Dubernet Dr. Alexander Erath** Dr. Gunnar Flötteröd **Pieter Fourie Prof. Kai Nagel Kirill Müller Dr. Andreas Neumann Benjamin Kickhöfer Sergio Ordonez Dr. Marcel** Rieser Lijun Sun Michael Van Eggermond **Dominik Ziemke** Michael Zilske

The Multi-Agent Transport Simulation MATSim

^{edited by} Andreas Horni, Kai Nagel, Kay W. Axhausen

Macro-Simulation vs. Micro-Simulation

Macro-Simulation

- Based on aggregated data
- Flows instead of individual movement
- Often planning networks
- Micro-Simulation
 - Population is modeled as a set of individuals
 - Traffic flows are based on the movement of single vehicles (or agents) and their interactions
 - Various traffic flow models, e.g. cellular automata model, queue model or car following model
 - Often high resolution networks (e.g. in navigation quality)

MATSim - Scenario creation

- A MATSim scenario contains some mandatory as well as some supplementary data structures
- Mandatory
 - Network
 - Population
- Supplementary
 - Facilities
 - Transit (Schedule, Vehicles)
 - Counts

Speed vs Resolution

Speed

Performance - Scenario

- Transportation system in Switzerland
- 24 h of an average Work-day
- 5.99 Mio Agents
- 1.6 Mio Facilities for 1.7 Mio Activities (5 Types)
- Navigation network with 1.0 Mio Links
- 4 Modes (others optional \rightarrow i.e. shared modes)
- 22.2 Mio Trips
- Routes-, Time-, (Subtour-)Mode- und "Location"-Choice

→ One Iteration in ca. 4.5 hours