Using GPS & GIS Technologies to Improve Transport Planning

presented at The 41st Annual URISA Conference Atlanta, GA

presented by Swiss Federal Institute of Technology, Zurich GeoStats, Atlanta

October 14, 2003

IVT / ETH Zurich

Presentation Outline

- Transport Planning Background
- Overview of Borlange Safety Study
- Characteristics of GPS Dataset
- Trip End Identification
- Trip Activity / Purpose Imputation
- Study Conclusions and Next Steps
- Transport Planning Opportunities

Transport Planning

- Travel Demand Models use sample households to represent regional and statewide mobility patterns
- These sample household typically report travel information for one to two days
 - 1-2 days of travel may not represent real travel behavior
 - Increasing data needs has increased respondent burden
 - Reporting accuracy is suspect
 - Response rates are declining
- Key challenge: to find methodology to passively collect accurate, detailed travel data for longer durations

Swedish Intelligent Speed Adaptation Study

- GPS-based units were installed in hundreds of cars in 3 cities
- Drivers were provided feedback (sound or display) whenever posted speed limit was exceed based on GIS network database
- Vehicles were observed for up to two years
- In Borlange, speed and location data of each vehicle was sent to central server for later analysis
- These data were processed prior to storage
 - Trip ends identified based on engine on / off events
 - GPS points snapped to link (including off network travel)
 - Out of area travel truncated at area boundary

IVT / ETH Zurich

Data Sets Available for Transport Analysis

- Processed vehicle files
 - trip summaries
 - GPS point files
- GIS files
 - road network
 - land use
- RES Data (2000-2001 Swedish National Travel Survey)

Vehicle File Statistics

- 186 private vehicles with GPS data (>30 days) and s/e information
- June 22, 2000 through March 4, 2002
- 49,667 vehicle days of travel
- 240,435 trips inside study area
- 9,873 trips starting or ending outside study area
- 148 vehicles maximum number observed on any one day

Number of Vehicles Traced by Week

IVT / ETH Zurich

Comparison of Trip Lengths < 25km (Borlänge GPS and 2001 RES)

IVT / ETH Zurich

Correcting the Traces – Bad or Missing Points

Examples of False Deviation From Path

IVT / ETH Zurich

Identifying All Trip Ends

- Some trip ends were missing within the initial trips
 - Short stops that do not involve an engine on /off event
- Some trip ends could be false
 - Possibly an engine stall
 - Driver could turn off engine during congestion delay
- Some trips may include abandoned trips

Summary of Vehicle GPS File Import Results

- 24 vehicle datasets imported
- 13,375 trips identified initially
- 2421 travel days
- **3,393,570 GPS points**
- 1 second and 10 second logging frequencies used
- 36,492 points filtered (1.1%)

Identification of Missing Trip Ends

Example of High-Circuity with Overlap

IVT / ETH Zurich

Trip End Identification Results

- 13,375 trips initially tagged for the 24 vehicles
- 4 trip ends were reclassified as engine stalls
- 3006 additional trip ends were found (22.5% increase)
 - 235 trips based on vehicle stops greater than 5 minutes
 - 420 trips based on vehicle stops between 2 and 5 minutes
 - 1751 trips based on high circuity routes with 5-120 second delay
 - 600 trips based on habitual destination
- 324 trips contained abandoned trip ends
- 5517 delays were tagged as 'probable congestion'

IVT / ETH Zurich

Info Sources for Activity Purpose Imputation

GPS Traces

 Destination location, activity duration, day of week, time of day, frequency of visit across study period

Associated Surveys

 Age, gender, education, profession, working hours, hobbies and social commitments, home locations of friends & relatives

Other Sources

- Cross-sectional or panel travel diary survey
- Land use database or map, parcel-level information

Clustering of observed last positions (crosses) to cluster centres / activity locations (boxes)

IVT / ETH Zurich

Identification of Trip Purposes by Land Use

IVT / ETH Zurich

Borlänge GPS Data Compared with RES data: Selected Mobility Characteristics

	Retirees				Fulltime workers			
Variable	RES		Borlänge GPS		RES		Borlänge GPS	
Mean number of	3.8	-3.8	4.3	-2.8	4.8	-5.7	3.9	-2.4
daily trips (Std.)								
Mean daily trip	24.6	-33.7	16.3	-12.5	32	-45.3	13.2	-11.3
distance [km] (Std.)								
Mean daily trip	44.1	-55.2	31.8	-22.4	58.7	-82.1	24.4	-18.2
duration [min] (Std.)								

* Local car trips made by respective groups; Sample sizes: RES weighted by sex & age, N(Fulltime workers) = 1516, N(Retirees) = 440; Borlänge: N(Fulltime workers) = 28, N(Retirees) = 11

Borlänge GPS Trip Purpose Assignment Compared with RES Data: % Trip Purpose Shares

	Reti	rees	Fulltime workers		
Trip purpose	RES	Borlänge	RES	Borlänge	
		GPS		GPS	
Pick up / Drop off	6.8	7	8.9	8.6	
Private business	4.6	10	3.7	8.2	
Work related	0.1	9.8	8.3	5.7	
School	-	0.1	0	0.1	
Work	0.3	-	16	10.2	
Daily shopping	12.4	4.4	6.1	1.5	
Long-term shopping	8.6	7.3	5.7	7.9	
Leisure	20.7	23.6	10.6	20.4	
Other	5.2	_	4.1	-	
Home	41.3	37.8	36.6	37.4	

* Local car trips made by respective groups; all days; RES weighted by sex and age, N(retirees) = 1516, N(fulltime workers) = 440; Borlänge: N(Fulltime workers) = 28, N(Retirees) = 11

Variety Seeking in Location Choice

Mean weekly number of "new" locations, i.e. locations which had not been previously visited during the observation

IVT / ETH Zurich

Study Conclusions and Next Steps

- Initial results show promise in use of GPS and GIS data collected in safety study for use in transport planning
- Great potential for intense spatial and temporal investigation of daily life travel (variability and regularity of trip making)
- Trip end identification may be improved by performing sensitivity analyses on key variable settings
- Trip activity / purpose identification may also be improved by further evaluation of activity buffer range
- These tasks will be performed using the same vehicle datasets

GPS/GIS Opportunities for Transport Planning

- GPS-enhanced Household Travel Surveys
- GPS-based Prompted Recall Surveys
- GPS data collected for other purposes can be archived and used for transport planning
 - AVL data
 - Safety studies
 - Behavioral change studies (to reduce travel)
- In all cases, GIS is the key to unlocking the information contained in the GPS data

