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In today’s world of increasing congestion and insufficient scope for infrastructural 

expansions, urban and transportation planners rely on the accuracy and behavioral 

realism of travel demand models to make informed policy decisions. The development of 

accurate and behaviorally realistic travel demand models requires a good understanding 

of individual travel behavior, and an important step toward this has been the development 

of the activity-based paradigm, which states that travel is a result of the desire to 

participate in activities at spatially scattered locations. Activity-based travel demand 

modeling systems essentially model the activity-travel patterns of individuals, which are 

characterized by several attributes such as activity purpose, location of activity 

participation and choice of mode. Of all these attributes, the choice of location of activity 

 vi



participation is one that has received relatively inadequate attention in the literature. On 

the other hand, the location of activity participation spatially pegs the daily activity-travel 

patterns of individuals. Accurate predictions of activity location are, therefore, key to 

effective travel demand management and air quality control strategies. Moreover, an 

understanding of the factors that influence the choice of location can contribute to more 

effective land-use and zoning policies. 

The broad objectives of this dissertation research are two-fold. The first objective 

is to develop a comprehensive econometric model of location choice for non-work 

activities that incorporates accuracy and behavioral realism in capturing different choice 

behaviors. This was achieved through the comprehensive introduction of heterogeneity in 

choice behavior, including observed and unobserved sources of inter- and intra-personal 

heterogeneity, spatial correlation, variety seeking and loyalty/inertial behavior, and 

spatial cognition. The estimation of such a flexible model typically requires the use of 

simulated maximum likelihood estimation (SMLE). The second broad objective of this 

research is to contribute toward improving the efficiency of the SMLE by comparing the 

performance of various quasi-Monte Carlo (QMC) sequences and their scrambled 

versions. Numerical experiments were designed and the Random Linear and Random 

Digit Scrambled Faure sequences are identified as the most efficient. Finally, all these 

research efforts contribute to the empirical estimation of non-maintenance shopping 

location choice models using panel data from the Mobidrive survey. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and Motivation 

The development of accurate and behaviorally realistic travel demand models 

plays an important role in transportation and land-use planning. Travel demand models 

enable urban and transportation planners to predict when, how, where, how often and 

why people travel. Accurate predictions of these travel choices contribute toward better 

spatial and temporal estimations of travel demand and vehicle miles of travel (VMT), 

which, in turn, leads to the reliable assessment of travel demand management and/or 

transportation infrastructure development and emission control measures. However, 

accurate predictions alone do not suffice as a criterion for good modeling practice. In 

particular, it is easy to statistically fit a travel demand model to any data and to any level 

of accuracy by including a number of model parameters. Thus, another important 

criterion for model development is the incorporation of behavioral realism. In addition to 

facilitating temporal/spatial transferability and informed policy analysis, the 

incorporation of behavioral realism in travel demand models helps establish the 

credibility of these models outside the modeling community. 

The development of accurate and behaviorally realistic travel demand models 

requires a good understanding of the factors and processes that influence the travel 

behavior of individuals. One of the key contributions toward understanding travel 

behavior has been the development of the activity-based paradigm that views travel as 

being derived from the desire to participate in activities. This more intuitive approach has 

a stronger basis in behavioral realism than the traditional trip-based approach to travel 
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demand modeling (see Bhat et al., 2003, for a detailed comparison of the two 

approaches). The focus of the activity-based approach is the modeling of the activity-

travel patterns of individuals, which may be characterized by six broad attributes: (a) 

Motivation or, equivalently, the activity purpose (such as work, shopping, recreation 

etc.), (b) Location of participation of the activity (such as the work place, grocery store or 

gym), (c) Sequencing of activities and the time of day of activity participation, (d) Mode 

used to travel to the activity location (for example, auto, transit or a combination of the 

two), (e) Frequency of activity participation, and (f) Solo or joint activity participation 

(see, for example, Bowman and Ben-Akiva, 2000, Bhat and Singh, 2000, Bhat and Misra, 

2002, and Hamed and Mannering, 1993). 

Of all these attributes, the choice of location of activity participation is one that 

has received relatively inadequate attention in the literature. On the other hand, the 

location of activity participation spatially pegs the daily activity-travel patterns of 

individuals. Accurate predictions of activity location are, therefore, key to effective travel 

demand management and air quality control strategies. Moreover, an understanding of 

the factors that influence the choice of location can contribute to more effective land-use 

and zoning policies. For instance, a habit-persistent individual may be more likely to 

continue shopping at the same grocery store rather than switching in response to a new 

land-use policy that brings more shopping opportunities closer to home. 

The choice of location of activity participation and the factors that influence this 

choice vary with the activity purpose. Generally, the work location for most people is 

fixed in the short-term (teleworking individuals may face the choice between working 
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from home and traveling to the office).  Non-work activity participation, on the other 

hand, is typically characterized by a high degree of spatial-temporal flexibility and 

discretion. The choice of location for non-work activities can thus vary significantly not 

only across individuals but also across choice occasions of an individual (see Hanson and 

Huff, 1988, Bhat, 1999). This dissertation research is focused on conceptually analyzing 

the non-work location choice problem and developing a comprehensive econometric 

model of non-work location choice that incorporates both accuracy and behavioral 

realism.  

The development of accurate and behaviorally realistic non-work location choice 

models is useful not only from the transportation and urban planning perspective but also 

from the perspective of service, retail and real estate businesses. 1 Predictions of where 

people shop and spend their recreational and leisure time plays an important role in the 

location and marketing decisions of businesses and firms. Literature, therefore, abounds 

in shopping location and store choice models (for example, see Burnett, 1977, Roy, 1981, 

Recker and Schuler, 1981, Fotheringham, 1988, Cadwallader, 1995, Rust and Donthu, 

1995, Gonzalez-Benito, 2002, and Beynon et al., 2002), and models of recreational and 

leisure site location (for example, see Train, 1998, Parsons and Hauber, 1998, and 

Kemperman et al., 2000, 2002, 2004). Another study area related to store choice 

modeling is that of location-allocation decisions. The focus of these models is the optimal 

location of facilities, services, and industries as a function of demand allocation and other 

factors (for example, see Hansen, 1987, Daskin et al., 2003, Shukla and Waddell, 1991, 

                                                 
1 Location choice models are also referred to as ‘destination choice models’ and ‘attraction-end choice 
models’ in the trip-based travel analysis literature. 
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and Perl and Ho, 1990). Location choice models have also been applied to model 

residential choice decisions (for example, see Roy, 1981, Feather, 1994, Ben-Akiva and 

Bowman, 1998, and Bhat and Guo, 2004) and migration location decisions (for example, 

see Fotheringham, 1991, Slater, 1992, Pellegrini and Fotheringham, 1999). The evident 

diversity in location choice modeling applications and the extent of its potential is 

underscored by the study of Xue and Brown (2003), who have developed a decision 

model for spatial site selection by criminals. A more comprehensive survey of literature 

in the field of location choice modeling is presented in chapter 2. 

1.2 Research Context and Objectives 

As discussed in the previous section, the focus of this dissertation research is the 

choice of location for non-work activity participation. The broad objectives of this 

research effort are two-fold. The first objective is to develop a comprehensive 

econometric model of location choice for non-work activities that incorporates accuracy 

and behavioral realism in capturing different kinds of choice behaviors. The estimation of 

such a model typically requires the use of simulated maximum likelihood inference. The 

second broad objective of this research is to contribute to improving the efficiency of the 

simulated maximum likelihood estimation (SMLE) by comparing the performance of 

various quasi-Monte Carlo (QMC) sequences and their scrambled versions. Each of these 

broad objectives is addressed in the following sections (sections 1.2.1 and 1.2.2) and the 

specific research objectives are summarized in the final section (section 1.3). 
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1.2.1 Location Choice Modeling for Non-work Activity Participation 

The development of an accurate and behaviorally realistic model of location 

choice for non-work activity participation necessitates a good understanding of the 

factors influencing the choice process. Extensive research has therefore been directed 

toward a better understanding of the cognitive processes, preference behavior and 

decision rules underlying location choice, and the spatial aspect of travel. Studies in 

psychology (for example, Pipkin, 1979, 1981, Halperin et al., 1983, Gärling et al., 1984, 

Anooshian and Seibert, 1996) deal with spatial cognition issues, i.e., the mechanics of the 

human brain in processing spatial information, and the resulting mental maps of the 

spatial layout of activities. Studies in geography are directed more toward understanding 

spatial interaction issues and their effects on choice behavior (see Sheppard, 1979, Birkin 

and Clarke, 1991, Gould and White, 1974, Fotheringham et al., 2001). 

The multi-disciplinary nature of the location choice problem and the diversity of 

potential applications have encouraged researchers in various fields to develop location 

choice models that bring together one or more of the various concepts of spatial 

interaction, cognition, preference behavior (such as habit persistence and variety-seeking) 

and decision rules. Smith (1978), for instance, develops a framework based on Portfolio 

theory with a Bayesian approach to account for location choice behavior under 

uncertainty (due to incomplete information). Although this model considers the effects of 

individual preferences and choice criteria, it ignores spatial interaction issues and is 

limited in its exploration of cognition. Hsu and Hsieh (2004) present an individual 

accessibility model to explain different travel-related decisions including location choice, 
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which is behaviorally descriptive and incorporates spatial-temporal constraints. However, 

their model is also limited in its exploration of spatial interaction and cognition. 

Kemperman et al. (2000, 2002) incorporate seasonality and variety-seeking effects in 

their model of the choice of theme parks, while Train (1998) focuses on inter-personal 

taste variations in anglers’ choices of fishing sites. These studies capture some of the 

observed and unobserved factors that contribute to inter- and intra-personal heterogeneity 

in the observed travel patterns, but the models are limited in capturing cognitive 

influences and do not address spatial interaction. Burnett (1978) applies Markovian 

theory to explain shopping location choice in terms of cognitive learning. Individuals 

potentially learn at every opportunity and the effects of learning on choice could 

potentially be carried infinitely into the future. Therefore, feedback-based mechanisms of 

learning, in the interest of practicality, must assume a state of learning equilibrium when 

individuals are supposed to have learnt all there is to learn. Further, they make 

assumptions regarding the starting point of the learning process that are known as initial 

conditions. While Burnett’s model accounts for the effects of increasing familiarity and 

new information (in other words, learning) on travel behavior, the model does not address 

the question of initial conditions and the definition of learning equilibrium. In addition, 

the model does not consider the differences in individual preferences and spatial 

interaction issues. 

All the above studies incorporate to varying degrees the effects of spatial 

cognition, preference behavior and attitudes on the choice of location. However, they do 

not incorporate the effects of interactions between the spatial choice alternatives. 

 6



Although the spatial nature of travel choices has been acknowledged in the literature (see 

Bhat, 2000, and Goulias, 2002), there are few studies that actually incorporate the various 

spatial interaction effects in modeling location choice (exceptions include Pozsgay and 

Bhat, 2002, Kanaroglou and Ferguson, 1996, Bolduc et al., 1997, Dellaert et al., 1998, 

and Bhat and Guo, 2004). The location choice studies that incorporate spatial interaction 

effects mostly ignore the effects of spatial cognition and preference behavior. 

The first broad objective of this research is to develop a behaviorally realistic 

location choice model for non-work activity participation that comprehensively 

incorporates the effects of spatial cognition, preference behavior and spatial interaction. 

The proposed model thus accommodates both inter- and intra-individual variations in 

location choice behavior due to various factors such as habit persistence, variety-seeking, 

cognitive learning and spatial-temporal constraints. The model also accommodates 

different spatial interaction effects such as spatial heterogeneity, spatial autocorrelation, 

agglomeration and competition. 

1.2.2 Comparison of QMC Sequences in SMLE of Discrete Choice Models 

The incorporation of behaviorally realistic concepts, such as spatial cognition and 

spatial interaction, in the proposed econometric model of location choice is achieved 

through the relaxation of restrictions that impose inappropriate behavioral assumptions 

regarding the underlying choice process. This relaxation of behavioral restrictions on 

choice model structures, in many cases, leads to analytically intractable choice 

probability expressions, which necessitate the use of numerical integration techniques to 

evaluate the multidimensional integrals in the probability expressions. The most 
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commonly used technique in the literature is the pseudo-Monte Carlo (PMC) simulation 

method that evaluates a multi-dimensional integral by replacing it with an average of the 

values of the integrand computed at N discrete and random points (PMC sequence). 

Extensive number theory research in the last few decades has led to the 

development of a more efficient simulation method, the quasi-Monte Carlo (QMC) 

method that uses the basic principle of the PMC method. However, rather than using 

random sequences, QMC methods use low-discrepancy, deterministic, quasi-Monte Carlo 

(or QMC) sequences that are designed to achieve a more even distribution of points in the 

integration space than the PMC sequences. Research on the generation and application of 

QMC sequences clearly indicates the superior accuracy of QMC methods over PMC 

methods in the evaluation of multidimensional integrals (see Morokoff and Caflisch, 

1994, 1995).  In particular, the advantages of using QMC simulation for such applications 

in econometrics as simulated maximum likelihood inference, where parameter estimation 

entails the approximation of several multidimensional integrals at each iteration of the 

optimization procedure, should be obvious. However, the first introduction of the QMC 

method for the simulated maximum likelihood inference of econometric choice models 

occurred only in 1999, when Bhat tested Halton sequences for mixed logit estimation and 

found their use to be vastly superior to random draws. Since Bhat’s initial effort, there 

have been several successful applications of QMC methods for the simulation estimation 

of flexible discrete choice models, though most of these applications have been based on 

the Halton sequence (see, for example, Revelt and Train, 2000; Bhat, 2001; Park et al., 

2003; Bhat and Gossen, 2004). Number theory, however, abounds in many other kinds of 
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low-discrepancy sequences that have been proven to have better theoretical and empirical 

convergence properties than the Halton sequence in the estimation of a single 

multidimensional integral. For instance, Bratley and Fox (1988) show that the Faure and 

Sobol sequences are superior to the Halton sequence in terms of accuracy and efficiency. 

There have also been several numerical studies on the simulation estimation of a single 

multidimensional integral that present significant improvements in the performance of 

QMC sequences through the use of scrambling techniques (Kocis and Whiten, 1997; 

Wang and Hickernell, 2000). 

The second broad objective of this research is, therefore, to examine the 

performances of the different QMC sequences and their scrambled versions in the 

simulation estimation of flexible discrete choice models such as the location choice 

model described in the previous section. 

1.3 Specific Research Objectives and Tasks 

As discussed in the preceding sections, the first broad objective of this 

dissertation is to perform an in-depth analysis of the choice of location for non-work 

activity participation. The development of an accurate and behaviorally realistic model of 

location choice for non-work activity participation necessitates a good understanding of 

all the observed and unobserved factors influencing location choice, combined with a 

sound theory relating spatial interaction, cognitive processes, preferences and decision 

rules to the observed choice. There exists a large body of literature that has made 

significant contributions toward this goal. The first research task is to conduct an 

extensive survey of this literature to guide the efforts toward the development of a theory 
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of non-work activity location choice. The next task is to develop a comprehensive 

framework of location choice decision-making for non-work activity participation that 

incorporates all the observed and unobserved factors that potentially influence the 

decision-maker while also considering cognitive and spatial interaction processes. 

Finally, the conceptual framework is translated into a general econometric model of 

location choice for non-work activity participation. 

The second broad objective of this dissertation is to contribute to improving the 

efficiency of the simulated maximum likelihood estimation (SMLE) procedure by 

comparing the performance of various quasi-Monte Carlo (QMC) sequences and their 

scrambled versions. A suitable experimental design is constructed for the comparison of 

the various sequences, and numerical experiments conducted to identify the best 

sequence. 

Finally, the two broad objectives of this dissertation research are tied together in 

the empirical estimation of non-work location choice models using a real-life multi-day 

dataset. These models will apply the comprehensive location choice model structure 

developed as a part of this research effort, and use the best QMC sequence identified 

through experiments for the simulated maximum likelihood estimation. 

1.4 Dissertation Outline 

The rest of this dissertation is organized as follows. 

Chapter 2 presents the results of the survey of spatial choice modeling literature. 

This extensive review of the literature helps in the identification of the key issues 

connected with understanding location choice behavior. Based on the observations drawn 
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from the literature survey in Chapter 2, Chapter 3 describes in detail the development of a 

comprehensive conceptual framework of location choice decisions for non-work activity 

participation. Chapter 4 presents a general location choice model structure that is 

developed based on the framework presented in chapter 3. 

The next two chapters present the work undertaken in comparing the efficiency of 

QMC sequences in the simulated maximum likelihood estimation of discrete choice 

models. Chapter 5 provides a background on the generation of QMC sequences and also 

describes the specific objectives of our research in examining these sequences. Chapter 6 

describes the numerical experiments performed with the QMC sequences and presents 

the results. 

The results of all these research efforts are applied in chapter 7, which presents an 

empirical analysis of location choice for non-work travel and discusses the policy 

implications of such an analysis. Chapter 8 concludes this dissertation with a summary of 

the main findings. The limitations of this research are discussed and potential extensions 

of the work are identified in this chapter. 
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CHAPTER 2. SPATIAL CHOICE MODELING 

The origins of location choice models lie in the aggregate modeling, undertaken 

over a century ago, of spatial movements and flows of people and commodities. Since 

then the need for greater accuracy and predictive capability and the drive for the 

incorporation of behavioral realism has resulted in disaggregate individual-level location 

choice models. Location choice models, as we know them today, model an individual’s 

observed choice of location for activity participation as a function of the individual’s 

socio-economic characteristics and the attributes of the alternative locations. The spatial 

aspect of activity participation, however, is not completely understood and, although 

most researchers agree on its importance, is often inadequately represented in location 

choice models (see, for example, Odland, 1981, Miller and O’Kelly, 1983, Cadwallader, 

1995, Train, 1998, and Kemperman et al., 2004). This is slowly changing as we see more 

location choice studies explicitly incorporating spatial interaction effects (for example, 

see Kanaroglou and Ferguson, 1996, Bolduc et al., 1997, Bhat and Guo, 2004; other 

activity-based models that are not focused on the location choice problem but incorporate 

spatial effects include Bhat, 2000, and Goulias, 2002). 

The modeling of spatial movements and flows, as mentioned earlier, has been the 

subject of research for over a century and there is a correspondingly extensive body of 

literature associated with it. These studies span a wide range of applications, apply a 

variety of different theories, and implement a number of modeling methodologies. In 

order to assimilate the contributions of this literature, it is necessary to classify the 

literature into manageable categories. In the following sections a four-level classification 
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scheme for the literature is first developed (section 2.1), followed by a review of the 

literature from the perspective of each of the different levels (sections 2.2, 2.3, 2.4 and 

2.5). 

2.1 Classification of Literature 

The general process of developing a location choice model, or any other model 

for that matter, can be simplified to three broad steps. The first step is the choice of an 

underlying theory. The location choice problem viewed from a classical microeconomic 

perspective, for instance, would treat individuals as rational entities with access to full 

information, who select the location that optimizes their utility subject to constraints. The 

second step is the choice of a modeling methodology. Continuing with the previous 

example of classical microeconomic theory, this could be a constrained linear or non-

linear optimization model of individual utility. The third step is the application. The 

optimization model developed in the previous step could be applied to model the 

shopping location decision of the individual. Following this simplified process of 

developing a location choice model, the literature may be classified by (a) underlying 

theory, (b) modeling methodology, and (c) application area. A fourth level in this scheme 

classifies the literature by the data used in the application. Figure 1 illustrates this 

classification scheme graphically. 

Before proceeding with a review of the literature as per this classification scheme, 

it is important to take note of a couple of issues. First, in generating a manageable 

number of categories for each level of classification, it is inevitable that some of the 

literature will bridge several categories. In such situations, discretion is used to classify 
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this literature as accurately as possible. Second, many research efforts focus solely on the 

development, rather than the choice, of an underlying theory or modeling methodology.   

Such studies appear only in the applicable levels of the classification scheme (for 

example, a research effort that develops a modeling methodology without an empirical 

application will only be classified by underlying theory and modeling methodology). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Classification Scheme for Spatial Flow/Choice Models 

METHODOLOGY 
Gravity & Entropy Maximization Models 

Markov Chain Models 
Constrained Utility Optimization 

Random Utility Maximization 
Multi-attribute Preference Models 

Heuristic Models 
Other Models 

APPLICATION AREA 
Store/Shopping Location Choice 

Leisure/Recreation Location Choice 
Facility Location 

Residential Location Choice 
Migration Modeling 

DATA 
Aggregate 

Disaggregate RP 
Disaggregate SP 

Hypothetical/Simulated 

UNDERLYING THEORY 
Macro-economic Theory 

Classical Microeconomic Theory 
Behavioral Decision Theory 

Other Theories 
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The following sections review the literature in turn by each of the four levels of 

the classification scheme. 

2.2 Classification Based on Underlying Theory 

Table 1 classifies the literature by their underlying theories. There are three 

widely known and used theories, the macro-economic theory, the classical 

microeconomic theory and the behavioral decision theory. The fourth category includes 

several less known theories such as information integration theory, spatial interaction and 

aggregation theories, and the Dempster-Shafer theory. Each of these categories is 

discussed in the following sections. 

 

Table 1. Classification by Underlying Theory 

Underlying Theory Papers 
Macroeconomic 
Theory 

Carey (1859); Roy (1981); Ravenstein (1885); Hecksher (1919); 
Ohlin (1933); Stouffer (1940); Stewart (1941);  Schneider (1959); 
Isard (1960); Huff (1963); Wilson (1967, 1971, 1974); Long and 
Uris (1971); Cesario (1973); Fisk and Brown (1975); Harris and 
Wilson (1978); Roy and Lesse (1981); Haynes and Fotheringham 
(1984); Cadwallader (1975); 

Classical Micro-
Economic Theory 

Goodchild (1978); Odland (1981); Berman et al. (1992); Perl and 
Ho (1990); Drezner et al. (1991); Brandeau and Chiu (1994); 
Laporte et al. (1994); Cadwallader (1995); Hsu and Hsieh (2004); 
Gannon (1972); Wesolowsky (1973); Morris and Norback (1980);

Behavioral Decision 
Theory 

Recker and Schuler (1981); Miller and O’Kelly (1983); Dunn and 
Wrigley (1985); Borgers and Timmermans (1987); Shukla and 
Waddell (1991); Timmermans et al. (1992); Feather (1994); Rust 
and Donthu (1995); Bolduc et al. (1997); Eymann and Ronning 
(1997); Leszczyc and Timmermans (1996); Bell et al. (1998); 
Fotheringham (1988); Dellaert et al. (1998); Train (1998); 
Parsons and Hauber (1998); Pellegrini and Fotheringham (1999, 
2002); Pozsgay and Bhat (2002); Xue and Brown (2003); 
Miyamoto et al. (2004); Sermons and Koppelman (1998, 2001); 
Learning 
Aaker and Jones (1971); Burnett (1977, 1978); Meyer (1979);  
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Cognition 
Golledge and Briggs (1973); Golledge and Zannaras (1973); 
Jones (1977); Golledge and Spector (1978); Smith (1978); Pipkin 
(1981); Hanson and Hanson (1981); Halperin et al. (1983); 
Anooshian and Seibert (1996); Fotheringham and Curtis (1999); 
Gärling et al. (1984); Burnett (1976, 1978); 

Other theories Information Integration 
Louviere and Woodworth (1983); Louviere (1984);  Oppewal et 
al. (1994); Kemperman et al. (2000, 2004); Levin and Louviere 
(1979); 
 
Spatial Interaction 
Gould and White (1974); Sheppard (1979); Birkin and Clarke 
(1991); Leonardi and Papageorgiou (1992);  
 
Spatial Aggregation 
Kitamura et al. (1979); Kanaroglou and Ferguson (1996); 
Ferguson and Kanaroglou (1998); Gonzalez-Benito (2002); 
Orpana and Lampinen (2003); 
 
Dempster-Shafer 
Beynon et al. (2002); 
 
Miscellaneous 
Aldskogius (1977); MacKay (1973); Thill and Wheeler (2000); 
Johnson and Payne (1985); 

 
2.2.1 Macroeconomic Theory 

The origin of spatial choice modeling lies in the macroeconomic modeling of 

spatial flows, which was first proposed as a means of modeling commodity flows across 

the nation (Carey, 1859). Macro-economic theory suggests that spatial flows may be 

modeled by the large-scale movements and flows of passengers and commodities.  

Modeling methodologies developed under this theory, such as the gravity model and 
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entropy maximization models2, are thus concerned with interaction patterns that result 

from aggregating individual choices across zones. Macroeconomic theory, though useful 

in the aggregate description of spatial flows, has been subject to substantial criticism for 

its lack of behavioral realism in explaining individual location choices. Nevertheless, this 

approach has been around for over a century and continues to enjoy widespread 

application in transportation planning. 

2.2.2 Classical Microeconomic Theory 

Classical microeconomic theory was adopted in spatial flow modeling as a means 

of describing individual choice behavior. It is based on the premise that individuals have 

access to full information and behave rationally in optimizing their total utility 

(maximizing profits or minimizing costs) subject to budget constraints. However, the 

assumptions of full information and perfect rationality render the classical 

microeconomic theory deficient in describing choice behavior realistically since people 

typically have access to incomplete information and oftentimes exhibit satisficing 

behavior. Classical microeconomic theory has therefore seen much more application in 

facility location modeling, where the profit maximization objective is more critical and 

appropriate, than individual choice modeling (Wesolowsky, 1973, Morris and Norback, 

1980, Laporte et al., 1994, Brandeau and Chiu, 1994, Drezner et al., 1991, Berman et al., 

1992, Perl and Ho, 1990). The biggest contribution of this theory to modeling the choice 

behavior of individuals has been the development of the behavioral decision theory. 
                                                 
2 Gravity and entropy maximization models are often referred to as aggregate spatial interaction models in 
the literature. The term ‘spatial interaction models’ is somewhat a misnomer as many of these models do 
not really account for spatial interaction effects. However, this is term has been in use for several decades 
and is used widely in geographic literature. 
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2.2.3 Behavioral Decision Theory 

Behavioral decision theory has developed over time as it evolved from the 

classical microeconomic theory. The relaxation of the restrictive assumptions of full 

information and perfect rationality that made classical microeconomic theory unsuitable 

for modeling individual choice behavior first resulted in the development of economic 

consumer theory. Consumer theory, while maintaining its roots in microeconomic theory, 

allows for satiation, taste variation and growth of needs. Over time this has further 

evolved to include concepts such as bounded rationality, decision-making under risk and 

uncertainty, and cognition and evolutionary behavior such as learning. This collection of 

concepts is now known as Behavioral Decision Theory. 

Most of the location choice literature that falls under the category of Behavioral 

Decision Theory considers one or more behavioral aspects of spatial choice-making. For 

instance, Recker and Schuler (1981) examine the order in which destination attributes are 

processed by individuals in their choice of grocery store; Miller and O’Kelly (1983) 

examine the effects of past choices on shopping location choice through feedback; Train 

(1998) examines taste variations across anglers in their choice of fishing site; Dellaert et 

al. (1998) examines shopping location choice from a trip-chaining perspective. Also in 

this category are studies focused on understanding evolutionary learning behavior 

through the modeling of a sequence of repeated location choices (Aaker and Jones, 1977, 

Burnett, 1977, 1978, among others), and studies focused on understanding cognitive 

processes within the human brain (Golledge and Spector, 1978, Pipkin, 1979, 1981, and 

Anooshian and Seibert, 1996, and Fotheringham and Curtis, 1999, to name a few). The 
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literature in the field of spatial cognition is very extensive and only those papers that are 

directly connected with location choice behavior are included in this category (see 

Golledge and Timmermans, 1990a, for an extensive survey of the literature in spatial 

cognition). 

2.2.4 Other Theories 

The “other theories” in the fourth category include information integration theory, 

spatial interaction and spatial aggregation theories, and Dempster-Shafer theory. And 

then there are a few miscellaneous studies that are not based on any specific theory, 

rather they attempt to statistically determine patterns in the observed choice data that can 

be related to individual characteristics and behavioral processes (Aldskogius, 1977, 

MacKay, 1973, Thill and Wheeler, 2000, Johnson and Payne, 1985). 

Information integration theory (Anderson, 1976) asserts that a response is the 

result of the integration of information according to simple algebraic rules such as 

addition, averaging, subtraction and multiplication. The application of this theory to 

choice behavior is based on the assumption that individuals cognitively integrate their 

subjective evaluations of the attributes of the alternatives to derive the utility for each 

choice alternative. The applications of this theory are therefore based on data from 

experimental designs, also known as stated preference surveys, which enable the 

collection of subjective evaluation data. 

The focus of spatial interaction theory is the premise that the arrangement of 

decision-makers and alternatives in the study area influences choice behavior. Various 

spatial interaction effects such as spatial correlation, and spatial heterogeneity have been 
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examined in the literature (see Bhat, 2000, for a description of these spatial interaction 

effects). The objective of spatial interaction theory is in essence the same as that of 

spatial aggregation theory i.e. to correctly capture the effects of the spatial structure on 

choice behavior. The theory of spatial aggregation effects attempts to understand and 

model the effects of aggregating individual locations and elemental attraction units into 

zones, which, in fact, translates to the examination of spatial correlation, heterogeneity 

and other spatial interaction effects. The primary difference between the two theories is 

that spatial aggregation theory considers the effects of spatial structure by explicitly 

considering the effects of aggregation on choice models. To that extent, spatial 

aggregation theory is more a modeling methodology. 

Dempster-Shafer theory is based on belief functions and subjective probability 

quantification (Shafer, 1990). This theory is applied to spatial choice behavior to 

determine ‘favorite locations’ for activity participation based on revealed preferences. 

The definition of ‘favorite locations’ is fuzzy and based on belief and plausibility 

measures. This theory proposes to capture the effects of social interactions on choice 

behavior. 

2.3 Classification Based on Modeling Methodology 

Table 2 classifies the literature by their modeling methodologies. The modeling 

methodologies have been broadly classified into gravity and entropy maximization 

models, constrained optimization models, markov chain models, random utility 

maximization models, multi-attribute preference models and heuristic models. The other 

modeling methodologies include log-linear models and verbal hypotheses. As seen in 
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Figure 2, nearly all the spatial choice studies based on macroeconomic theory use gravity 

and entropy maximization formulations, and all those based on classical microeconomic 

theory use constrained optimization formulations. Each of the categories in this level of 

the classification scheme is discussed in the following sections. 

Table 2. Classification by Modeling Methodology 

Modeling 
Methodology Paper Underlying 

Theory 

Gravity & 
Entropy 
Maximization  

Carey (1859); Ravenstein (1885); Hecksher (1919); 
Ohlin (1933); Stouffer (1940); Stewart (1941);  
Schneider (1959); Isard (1960); Huff (1963); Wilson 
(1967, 1971, 1974); Long and Uris (1971); Cesario 
(1973); Fisk and Brown (1975); Harris and Wilson 
(1978); Roy (1981); Roy and Lesse (1981); Haynes and 
Fotheringham (1984); Cadwallader (1975); 

Macroeconomic 

Constrained 
Optimization  

Goodchild (1978); Odland (1981); Berman et al. 
(1992); Perl and Ho (1990); Drezner et al. (1991); 
Brandeau and Chiu (1994); Laporte et al. (1994); Hsu 
and Hsieh (2004); Gannon (1972); Wesolowsky 
(1973); Morris and Norback (1980); 

Classical Micro-
Economic 

Markov Chain  Aaker and Jones (1971); Burnett (1977, 1978);  Behavioral 
Decision 

Random Utility 
Maximization  

Recker and Schuler (1981); Miller and O’Kelly (1983); 
Dunn and Wrigley (1985); Borgers and Timmermans 
(1987); Dellaert et al. (1998); Shukla and Waddell 
(1991); Timmermans et al. (1992); Feather (1994); 
Rust and Donthu (1995); Bolduc et al. (1997); Eymann 
and Ronning (1997); Leszczyc and Timmermans 
(1996); Bell et al. (1998); Fotheringham (1988); Train 
(1998); Parsons and Hauber (1998); Pellegrini and 
Fotheringham (1999, 2002); Pozsgay and Bhat (2002); 
Xue and Brown (2003); Kemperman et al. (2004); 
Miyamoto et al. (2004); Sermons and Koppelman 
(1998, 2001); 
 

Behavioral 
Decision 

 

Kitamura et al. (1979); Kanaroglou and Ferguson 
(1996); Ferguson and Kanaroglou (1998); Gonzalez-
Benito (2002); Orpana and Lampinen (2003); 
 

Spatial 
Aggregation 
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Multi-attribute 
Preference  

Louviere and Woodworth (1983); Louviere (1984);  
Oppewal et al. (1994); Kemperman et al. (2000); Levin 
and Louviere (1979); 
 

Information 
Integration 
Theory 

Heuristic 
Models 

Aldskogius (1977); MacKay (1973); Thill and Wheeler 
(2000); Fischer and Reismann (2002); Johnson and 
Payne (1985) 

- 

Other Models   

Log-linear Cadwallader (1995) Classical Micro-
economic 

Bayesian Beynon et al. (2002) Dempster-Shafer 
Verbal 
Hypotheses 

Horton and Reynolds (1969); Wheeler and Stutz 
(1971); Schönfelder and Axhausen (2004); - 

 

2.3.1 Gravity and Entropy Maximization 

The first approach to address movements and flows across space was the 

macroeconomic gravity model based on Newton’s Theory of Gravity, dating back to the 

late 1800s. The first gravity model (Carey, 1859), as seen in equation 1, computes the 

number of trips between origin i and destination j (Tij) as a simple function of the sizes of 

the origin and destination (Pi and Pj), and the distance between them (dij) using a scaling 

factor k. 

ij

ji
ij d

PP
kT =                  Eq. 1 

This formulation then gave way to a more general one that recognizes that the 

relationships embedded in equation 1 may vary across trip types and with the socio-

economic attributes of zones. The new formulation also recognizes that many origin and 

destination attributes, rather than just the two size variables, could potentially influence 

the flow patterns. This more general gravity formulation (Haynes and Fotheringham, 

1984) computes the number of trips between origin i and destination j (Tij) as 
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where there are f origin attributes, (Vi1, Vi2, …, Vif), and g destination attributes, (Vj1, Vj2, 

…, Vjg), and each attribute contributes to the flows to a different degree, as indicated by 

the factors α1,…,αf, and λ1,…,λg. Although this model has been shown to produce 

reasonably accurate estimates of spatial flows, it does not possess any theoretical 

grounding in the travel behavior of individuals. 

The next major advance in the macroeconomic modeling of spatial flows was the 

development of the entropy maximization theory (Wilson, 1967, 1974), which give rise 

to a family of spatial interaction models including the gravity model, the production-

constrained model (equation 3), the attraction-constrained model (equation 4), and the 

doubly-constrained model (equations 5,6,7). 
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, and              Eq. 4 

β
ijjjiiij dDBOAT = , where             Eq. 5 

∑ −=
j

ijjji dDBA 1)( β ,              Eq. 6 

∑ −=
j

ijjji dDBA 1)( β ,              Eq. 7 

Oi is the known total flow from origin i, Pj is the population of destination zone j, and Dj 

is the known total inflow into destination j. The entropy procedure is based on the 

enumeration approach of combinatorial analysis, and is derived from statistical 
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mechanics. The basic premise of these models is to enumerate all the possible zone-to-

zone flow interchanges and pick the one with the highest uncertainty subject to 

constraints. However, as with the gravity model, these models have also been criticized 

for lacking a behavioral perspective in explaining individual travel decisions (despite 

which the production-constrained spatial interaction model continues to be widely used). 

2.3.2 Constrained Optimization 

The evident need for spatial flow models that can describe an individual’s choice 

of location resulted in the adoption of classical microeconomic theory and with it the use 

of constrained optimization models. Constrained optimization models construct the utility 

of the decision-maker (individual, household, factory etc.) as a demand and supply 

function, wherein resources are consumed and utility is gained to varying degrees 

depending on the choice of the alternative and the decision-maker selects the alternative 

that maximizes utility subject to resource constraints (such as time or money). A general 

formulation of a constrained optimization model is presented in equation 8, where U, the 

utility of the decision-maker, is a function of the decision variables in vector x ; c  is a 

vector of cost functions associated with the decision variables; and C is total quantity of 

resources available to the decision-maker. 

)(max xU ,     Cx c to subject ≤        Eq. 8 

Constrained optimization models as per classical microeconomic theory are typically 

applied to continuous decision variables, though they have been adapted to discrete 

choices of location. For example, Odland, 1981, adapts the constrained utility 

optimization model for household location choices, while Gannon (1972), Wesolowsky 
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(1973), Berman et al. (1992), and others apply them to industrial location choice 

decisions. 

2.3.3 Markov Chain 

The use of markov chain models appeared in spatial choice modeling as one of 

the first attempts at incorporating behavioral realism within the micro-economic 

approach. Specifically, markov chain models of location choice for shopping (Aaker and 

Jones, 1971 and Burnett, 1977) were developed to investigate the adaptive or 

evolutionary learning behavior of decision-makers. In general, if 

is a constant set of mutually exclusive and exhaustive location 

choice alternatives, then the set of probabilities  that an 

individual i will choose spatial alternative D

),....,,....,{ 1 ki DDDD =

),....,....,( 1,1,1,1 +++ nknin PPP

i (i = 1,2,…k) on his or her next (n+1)th 

choice is given by the assumption of a steady-state Markov process. Under suitable 

assumptions of Markov processes the probabilities for any chain of location choices may 

be determined. Log-linear models (Burnett, 1978, Cadwallader, 1995) are simply 

extensions of simple markov chain processes that allow the probabilities to vary by 

choice occasion (this type of time-dependent markov processes are referred to as being 

non-stationary). 

2.3.4 Multi-attribute Preference 

Multi-attribute preference models, with their roots in information integration 

theory (Louviere, 1984), are used to model the subjective element of individual choices.  

These models are typically based on stated-preference (SP) survey data, which are based 

on individual responses to experimentally designed questions. Individuals indicate their 

 25



preference for various attributes, both subjective and objective, of the choice alternatives 

and their utilities are formulated as being an integration of the evaluation of all the 

attributes. In Louviere and Woodworth (1983) and Louviere (1984), for instance, the 

utility of the alternatives is modeled as a weighted function of the various attributes.  

Multi-attribute preference models are also known in the literature as decompositional 

models or conjoint choice models, though the term ‘conjoint choice models’ is typically 

extended to all kinds of formulations that use SP data including multinomial logit 

formulations based on random utility maximization. 

2.3.5 Random Utility Maximization 

The derivation of the discrete choice model, based on the theory of random utility 

maximization, by McFadden in the late 1970s provided a big impetus toward the 

modeling of spatial flows. The discrete choice paradigm not only brings the problem of 

understanding spatial flows down to the individual decision-maker but also acknowledges 

the discrete nature of spatial choices (although space is a continuous entity individuals 

choose specific locations). It “assumes the existence of a utility maximizing decision-maker 

confronted with a set of mutually exclusive, collectively exhaustive alternatives, only one of which can be 

selected. This decision maker is further assumed to associate some utility with each alternative, and this 

utility is random for two possible reasons: Either some aspects of the decision problem or decision-maker 

lead to variability in the evaluation of the alternatives that cannot be explained by any measurable factors, 

or the analyst, when attempting to explain the observed choices, cannot fully characterize the decision-

maker’s choice criterion.” (see Lerman, 1983). Thus the discrete choice model effectively 

addresses the various factors, both observed and unobserved, influencing location choice 

decisions and hence spatial flows. 
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The utility that individual i attributes to location j, Uij, is therefore composed of 

two parts, a measurable component, Vij, and a random error component, εij. 

ijijij VU ε+=                        Eq. 9 

Based on the theory of utility maximization and conditional on assumptions placed on the 

random component, several formulations such as the multinomial probit or logit models 

may be derived.  The multinomial logit model, for instance, is based on the assumption of 

extreme value distribution of the error term and is given by 

∑
∈

=

Cj

V

V

ij ij

ij

e
ep ,          Eq. 10 

where, pij, is the probability that individual i selects location j, and C is the choice set of 

locations available to the individual. The multinomial logit (MNL) formulation in its 

simplest form (equation 10) suffers from the undesirable property of independence from 

irrelevant alternatives (IIA) despite which there have been several applications of this 

model in the location choice literature (Recker and Schuler, 1981, Shukla and Waddell, 

1991, Sermons and Koppelman, 1998, 2001, and Bell et al., 1998, to name a few). Some 

studies work around this shortcoming of the MNL model by using non-linear 

specifications of the utility function to introduce interaction effects among the spatial 

alternatives (example, Pozsgay and Bhat, 2002 and Fotheringham, 1988). Extensions of 

the MNL model, such as the nested logit (NL) and the mixed logit (ML) models relax the 

restrictive assumptions on the MNL in different ways and provide more flexible 

formulations for location choice modeling applications (see Miller and O’Kelly, 1983, 
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Hansen, 1987, Eymann and Ronning, 1997, Train, 1998, Kemperman et al., 2004, 

Miyamoto, 2004). 

2.3.6 Heuristics 

Another approach to describing and modeling location choice behavior that is 

seen in the literature is that of heuristic models. Thill and Wheeler (2000) use decision 

trees to model shopping location choice, while Fischer and Reismann (2002) propose a 

neural network approach to modeling spatial choice. Others, such as Aldskogius (1977) 

and MacKay (1973) use informal map analysis, and trend surface analysis to capture 

patterns in spatial choice behavior. 

2.3.7 Other Models 

The other models used in the literature are log-linear models (Cadwallader, 1995) 

that are similar to multiple regression models, models based on the Bayesian theory of 

beliefs (Beynon et al., 2002) and several verbal hypotheses. Studies such as the ones by 

Horton and Reynolds (1969) and Wheeler and Stutz (1971) examine activity-travel 

patterns of individuals and generate hypotheses of activity-travel behavior as a whole. 

Examples of these include the hypotheses of activity spaces by Horton and Reynolds 

(1969) and Schönfelder and Axhausen (2004), and social travel fields by Wheeler and 

Stutz (1971). 

2.4 Classification Based on Application Area 

The earliest applications of spatial flow models were in the determination of 

person and freight flows for urban planning and demand/supply decisions. Since then 

modeling of spatial flows has been an important topic of research in many fields 
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including economics, geography, psychology, marketing, engineering, econometrics, 

mathematics and transportation, and the many theories proposed by these research efforts 

contribute in some way to our understanding of the location choice problem. Ultimately, 

though, all these theories are targeted at developing better location choice models that can 

be applied reliably and effectively for purposes such as service and facility location, 

industrial or business location, and urban and transportation planning. The many 

applications of location choice models can be grouped into 5 broad categories – shopping 

location and store choice, leisure and recreation location choice, facility location, 

residential location choice and migration modeling. Table 3 classifies the literature by 

these categories, each of which is discussed in the following sections. 

Table 3. Classification by Application Area 

Application 
Area Paper Modeling 

Methodology Data Underlying 
Theory 

Burnett (1977, 1978) Markov Chain RP Learning 
Miller and O’Kelly (1983) RUM RP (t) BDT 
Cadwallader (1975) Gravity Aggregate Macro-Economic 
Aaker and Jones (1971) Markov Chain RP (t) Learning 
Dunn and Wrigley (1985) RUM RP (t) BDT 
Borgers and Timmermans (1987) RUM Synth BDT 
Dellaert et al. (1998) RUM SP BDT 
Timmermans et al. (1992) RUM SP BDT 
Rust and Donthu (1995) RUM RP BDT 
Leszczyc and Timmermans 
(1996)    BDT 

Bell et al. (1998) RUM RP (t) BDT 
Fotheringham (1988) RUM RP BDT 
Gonzalez-Benito (2002) RUM RP BDT 
Orpana and Lampinen (2003) RUM Aggregate BDT 
Thill and Wheeler (2000) Heuristics RP - 
Cadwallader (1995) RUM RP/SP BDT 

Shopping 
Location 
and Store 
Choice 

Beynon et al. (2002) Bayesian  Dempster-Shafer 
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Eymann and Ronning (1997) RUM RP BDT 
Train (1998) RUM RP BDT 
Parsons and Hauber (1998) RUM RP BDT 
Kemperman et al. (2000, 2004) RUM SP BDT 
Pozsgay and Bhat (2002) RUM RP BDT 

Leisure 
and 
Recreation 
Choice 

Aldskogius (1977) Heuristic RP - 
Goodchild (1978) Optimization Hypo Micro-Economic 
Berman et al. (1992) Optimization RP Micro-Economic 
Perl and Ho (1990) Optimization RP Micro-Economic 
Drezner et al. (1991) Optimization Hypo Micro-Economic 
Brandeau and Chiu (1994) Optimization RP Micro-Economic 
Laporte et al. (1994) Optimization Hypo Micro-Economic 
Gannon (1972) Optimization Hypo Micro-Economic 
Wesolowsky (1973) Optimization Hypo Micro-Economic 
Morris and Norback (1980) Optimization - Micro-Economic 
Shukla and Waddell (1991) RUM Aggregate BDT 
Bolduc et al. (1997) RUM RP BDT 

Facility 
Location 

Hansen (1987) RUM - BDT 
Roy (1981)    
Feather (1994) RUM RP BDT 
Ben-Akiva and Bowman (1998) RUM RP BDT 
Sermons and Koppelman (1998, 
2001) RUM RP BDT 

Bhat and Guo (2004) RUM RP BDT 

Residential 
Location 
Choice 

Miyamoto et al. (2004) RUM RP BDT 
Pellegrini and Fotheringham 
(1999, 2002) RUM RP BDT 

Kanaroglou and Ferguson (1996) RUM - BDT 
Fotheringham et al. (2001) RUM Synth BDT 

Migration 
Modeling 

Slater (1992) RUM  BDT 
 

2.4.1 Shopping Location and Store Choice 

Spatial choice modeling has been used extensively in the development of store 

choice models, which provide important consumer demand feedback to businesses and 

serve as inputs to marketing decisions. The type of data usually drives the modeling 

methodology. Gravity and entropy maximization models are typically used with 

aggregate data (Cadwallader, 1975), while multi-attribute preference and random utility 
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maximization models are typically used with disaggregate data (Cadwallader, 1995, 

Gonzalez-Benito, 2002, Dunn and Wrigley, 1985, Borgers and Timmermans, 1987). 

Most spatial choice models in consumer theory, however, are based on disaggregate data, 

both from revealed preference (RP) and stated preference (SP) surveys. Other shopping 

location choice models have also been developed in applied geography, and 

transportation from the perspective of urban and transportation planning needs. One of 

the first of this kind was the shopping destination choice model developed by Miller and 

O’Kelly (1983). They implemented logit models with state dependence to account for the 

effects of past choices. Other shopping location models in the literature include Thill and 

Wheeler (2000), Fotheringham (1988), and Timmermans et al. (1992). Aaker and Jones 

(1971) and Burnett (1977, 1978) examine shopping travel patterns from an evolutionary 

learning perspective. 

2.4.2 Leisure and Recreation Location Choice 

Spatial choice models have also found application in the leisure sciences, in 

determining individuals’ choices of recreational and leisure sites such as theme parks. 

The leisure sciences applications are mostly based on disaggregate data, both RP and SP, 

and invariably use the random utility maximization theory. For example, Kemperman et 

al. (2000) incorporate variety-seeking and seasonality effects into a mixed logit model of 

the SP choice of theme parks. Kemperman et al. (2004), on the other hand, use RP data to 

model heterogeneity and substitution effects in the propensity of visiting urban parks 

using a mixed logit model. Train (1998) also uses RP data to estimate random parameter 

logit models of anglers’ choice of fishing sites, thus incorporating taste differences across 
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decision-makers. Pozsgay and Bhat (2002) estimate a nonlinear-in-parameters 

multinomial logit model for destination choice in urban recreational trips. There have 

been several other research efforts that attempt to capture the complexity of location 

choice decisions for non-work trips in general. Horowitz (1980) presents a logit model 

for destination and mode choice in multi-destination non-work travel, while Kitamura 

(1984) examines the effects of trip chaining on destination choice decisions. 

2.4.3 Facility Location 

Somewhat related to store choice models is a class of location-allocation models 

known as facility location models. These models are developed from the perspective of 

firms, businesses, industries and public service agencies, in order to help them with their 

location decisions. These models are, therefore, developed with a view to maximize 

profits and the allocated consumer demand while ensuring low cost and ease of supply. 

Location decisions for industries and businesses (example, Wesolowsky, 1977) are 

treated differently from location decisions for public services (example, Perl and Ho, 

1990), the key difference being the elasticity of demand expected for public service 

facilities. Also, location decisions for discretionary service facilities (example, Berman et 

al., 1992) are different from the location decisions for essential service facilities since 

customers tend to visit discretionary service facilities (such as ATMs and gas stations) on 

their way to other activity locations. 

2.4.4 Residential Location Choice 

Spatial choice models based on random utility maximization have also been 

widely used in housing choice analysis. In addition to explaining residential mobility 
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these models also serve to inform the real-estate market of the expected spatial demand. 

There exists a substantial and rich body of literature in this area. Some examples include 

McFadden (1978), Onaka and Clark (1983), Timmermans (1992), Waddell (1993, 1996), 

and Bhat and Guo (2004). Guo (2004) presents an extensive literature review of 

residential location choice models in the literature. 

2.4.5 Migration Modeling 

Migration studies are inherently interdisciplinary and are a result of research in 

various fields including sociology, economics, demography, anthropology, and urban 

planning. The main aim of migration studies, specifically by geographers, is to 

understand where and why people migrate, and by this very definition involve the 

modeling of spatial choices. Fotheringham (1983) made one of the most important 

contributions to migration studies by developing a new spatial choice model known as 

the competing destinations model. The competing destinations model is based on the 

theory that individuals process spatial information hierarchically, and can also derived 

from the random utility maximization theory. 

2.5 Review of Literature by Type of Data 

The classification of spatial flow models can also be data-driven (see Table 3, the 

fourth column indicates the type of data used). Aggregate models predict total zone-to-

zone flows, while disaggregate models predict the decision-maker’s choice of specific 

locations, and each of these type of models has different data needs. The disaggregate 

models can be further classified based on the type of data as revealed preference (RP) and 

stated preference (SP) models. Some studies use panel revealed preference data 
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(represented as RP (t) in Table 3). In addition, several studies use hypothetical (Hypo) or 

synthesized (Synth) data to demonstrate their theories (example, Goodchild, 1978, 

Gannon, 1972, Wesolowsky, 1973 and Fotheringham et al., 2001). 

The first models of spatial flow, including the gravity model and the suite of 

spatial interaction models, were aggregate in nature. They used data on aggregate zone-

to-zone flows and ignored the individual entity involved in the movements, be it people 

or freight (see Cesario, 1973, Roy and Lessee, 1981, and Cadwallader, 1975). Most other 

modeling methodologies used to analyze location choice in the literature revolve around 

the entity responsible for the spatial flows, such as the individual making destination 

choices or the businesses making location choices (see Dunn and Wrigley, 1985, Dellaert 

et al., 1998, Rust and Donthu, Berman et al., 1992), and are disaggregate in nature. These 

disaggregate models are, however, flexible enough to handle aggregate data if necessary, 

as seen in the study by Orpana and Lampinen (2003). 

Within the suite of disaggregate models, some studies use revealed preference 

(RP) data (example, Miller and O’Kelly, 1983, Burnett, 1977 and 1978) while others use 

stated preference (SP) data (example, Timmermans et al., 1992 and Dellaert et al., 1998). 

Researchers prefer RP and SP data for different reasons. SP data derived from controlled 

experiments could potentially reveal the underlying decision processes, unlike RP data 

where only the final destination selections are observed which could be driven by 

unobserved constraints rather than true choices. RP data, on the other hand, can be used 

to simulate real-world decisions and thus develop better predictive models. Studies by 

 34



Bhat and Castelar (2002) and Ben-Akiva and Morikawa (1997) present the advantages of 

using both RP and SP data in model development. 

Disaggregate models also vary in the level of aggregation of the choice 

alternatives modeled. Most studies in marketing and consumer theory model the choice 

of elemental units of attraction such as grocery stores. This is necessary since the aim of 

such studies is to examine the effects of marketing policies on the demand at specific 

store locations. Marketing surveys that drive such modeling efforts are also geared to 

gather data at this level of disaggregation. Several transportation studies, on the other 

hand, focus on the zonal aggregates (also called transportation analysis zones or TAZs) of 

the sources of attraction rather than the elemental units of attraction chosen by the 

decision-maker. This is usually data driven since most travel surveys only contain zonal 

information rather than point locations, although this trend is changing now. Also the 

attributes of zones are more easily available to the travel demand modeler than the 

attributes of the elemental units of attraction. The focus on zones as alternatives, 

however, is not too restrictive since the ultimate aim of travel demand models is to 

predict interzonal flows. Moreover, individuals are likely to perceive elemental units of 

attraction in clusters (such as shopping districts), and as the size of TAZs are shrinking 

they may actually match the perceived units of attraction. 

2.6 Summary 

A review of the extensive spatial choice modeling literature contributes toward 

the identification of the many issues associated with modeling location choice. These 

issues are discussed in greater detail in the following chapter. 
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The literature review also indicates that the behavioral decision theory is one of 

the best suited to develop accurate and behaviorally realistic location choice models. A 

sound model of location choice should combine behavioral realism in the representation 

of the choice process with the incorporation of spatial interaction effects. The next two 

chapters describe the development of a model of location choice based on behavioral 

decision theory that accommodates both inter- and intra-individual variations in location 

choice behavior due to various factors such as habit persistence, variety seeking, 

cognitive learning and spatial-temporal constraints, as well as different spatial interaction 

effects such as spatial heterogeneity, spatial autocorrelation, agglomeration and 

competition. 
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CHAPTER 3. CONCEPTUAL FRAMEWORK 

The objective of this research is to develop a comprehensive conceptual 

framework and model structure for the choice of location for non-work activity 

participation. The review of the extensive literature on location choice modeling 

presented in the previous chapter contributes toward this objective by identifying the key 

issues connected with understanding location choice behavior. This chapter presents a 

clear picture of location choice behavior and analyzes the key issues connected with 

understanding location choice behavior (section 3.1), proposes a comprehensive list of 

factors that influence the choice of location for non-work activity participation (section 

3.2), and develops a conceptual framework that is exhaustive and complete in its 

consideration of causal factors (section 3.3). 

3.1 Understanding Location Choice Behavior 

The only observable parts of individual location choice behavior in most cases are 

the actual choice of location, the associated circumstances (such as mode used, time of 

day and accompanying individuals), individual socio-demographic characteristics, and 

the attributes of the alternative locations. In order to clearly understand the motivations 

behind the observed choice, however, it is important to recognize the unobserved part of 

the choice behavior i.e. the cognitive processes and the resultant preferences. 

Understanding the linkages between cognition, preference and behavior is therefore the 

key to understanding location choice behavior (Pipkin, 1981). 
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A simple picture of the choice process is as follows. Cognitive processes in the 

brain are influenced by the social and spatial environments to generate a mental map of 

preferences, which is then influenced by constraints and social effects to generate the 

observed choice (see Figure 2 for an illustration). We shall now proceed to examine this 

picture in detail. 

Constraints 

Spatial 
Environment 

Social 
Environment 

Mental Map of 
Preferences

Social 
Effects 

Cognitive 
Processes

 

 

 

 

 

 

 
Observed 

Choice

Figure 2. Effects of cognitive processes and preferences on observed choice 

 

Cognitive processes consist of internal psychological processes such as perception 

(perception of space, perception of the attributes of alternatives), learning (recalling past 

experiences from memory, recalling the spatial structure of the surroundings) and 

problem solving. These cognitive processes subsume an individual’s subconscious 

awareness of his or her situation in life, which includes not only factors independent of 

the choice occasion such as family structure, role in family and availability of resources, 

but also factors that vary with the choice occasion such as what the rest of the family is 

doing and whether the household vehicles are available, or whether it will be a joint 
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activity with other family members. Cognitive processes are also influenced by the 

external environment, both social and spatial, to generate a mental map of preferences. 

The influence of the social environment manifests itself in two different forms. There are 

the effects of socially defined norms, preferences and prejudices on one hand, while on 

the other there is information interchange.  The result of social norms can be observed in 

the way people tend to prefer neighborhoods that are similar to their own socio-economic 

circumstances. Information interchange, on the other hand, increases an individual’s 

awareness of his surroundings either through conversations with friends and family or 

through exposure to public media. The influence of the spatial environment is a result of 

the vastness of the spatial environment, the directionality introduced in the spatial 

structure due to the transportation infrastructure and land-use variations, and the 

cognitive processes involved in processing all this spatial information. 

The mental map of preferences that results from all the above cognitive processes 

is a conscious manifestation of the subconscious processes and is defined succinctly by 

Pipkin (1981) as the representation of environmental learning retrieved from memory. An 

individual’s conscious preferences are further influenced by constraints such as time and 

income budgets, and social effects such as the preferences of other members of the party 

in the case of joint activity participation. The observed choice is thus a result of these 

constraints and social effects on the preferences. 

In the process of developing a better understanding of location choice behavior, 

several key issues were identified that need to be considered in generating a 
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comprehensive conceptual framework for modeling location choice. These issues are 

discussed in the following sections. 

3.1.1 Simultaneity in decision-making 

The primary decisions that individuals make to participate in activities separated 

over space are the location of activity participation, the choice of the mode of travel, the 

time of day of travel, solo versus joint travel, route choice, and the choice of trip 

chaining. The order in which these decisions are made is unknown to the observer and 

there has been no proof that any particular sequence of decisions is more likely than the 

other (but see Pendyala et al., 2002). In fact, it is very likely that the sequence of 

decisions varies across individuals and across choice occasions for each individual 

depending on personal preferences and constraints. It is important to keep this in mind 

while developing a comprehensive location choice model, since one or more of these 

decisions may be correlated with the choice of activity location (see Figure 3). 

Location Mode

Time of 
Day 

Joint/ 
Solo 

Route Tripchain

 
Figure 3. Simultaneity in activity participation choices 
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3.1.2 The “choice” issue 

Another important issue to be aware of in the analysis of choice behavior of any 

kind is the meaning attributed to the word “choice”. The observed choice of alternative is 

not always a direct result of individual preferences; rather, as discussed earlier, it could 

be the result of constraints and social effects on individual preferences. For instance, 

although a particular grocery store may be the most preferred for both individuals A and 

B, A as a single female with fewer constraints may actual choose to shop at that store 

while B with an inflexible work schedule and as a father of school-going children may be 

constrained to shop at a grocery store on the way to the school from work. In this 

example, B’s choice is not so much an ideal “choice” as the best option under the 

circumstances. Similarly, a person who prefers to go to the gym with a partner may be 

forced to compromise on the choice of the gym depending on her partner’s preferences. 

A sound model of location choice should attempt to incorporate the effects of such 

constraints on choice behavior in order to achieve behavioral realism. 

3.1.3 Identifying sources of heterogeneity 

The flexible and personal nature of non-work activity participation results in 

highly heterogeneous behavior. A good location choice model should incorporate such 

varied choice behavior, which is possible only if all the sources of heterogeneity 

(including constraints and social effects as noted in the preceding section) are identified. 

The heterogeneity in choice behavior could be inter-personal or intra-personal, 

and it could be due to observed or unobserved factors (from the analyst’s viewpoint). 

Interpersonal heterogeneity in non-work location choice could be a result of observed 
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factors such as income or unobserved factors such as habit persistence. In other words, 

different individuals may choose different shopping locations depending on their income 

levels and the corresponding spending capacity. Two individuals identical in every 

respect (from the analyst’s viewpoint) may still choose different locations if one of them 

exhibits habit persistence and therefore selects a location that may not have the highest 

utility associated with it. Intrapersonal heterogeneity in non-work location choice could 

also be a result of observed or unobserved factors. Observed factors such as the time of 

day may constrain an individual to choose a closer shopping location on a weekday, 

whereas the individual might prefer a different, more distant shopping location in the 

absence of time constraints on the weekend. Unobserved factors such as variety-seeking 

or boredom may also result in an individual selecting different shopping locations on 

consecutive choice occasions. 

There are many such possible sources of heterogeneity, and it is important to 

identify and include all these within the conceptual framework for non-work location 

choice. Omitted sources of heterogeneity in choice models usually result in 

underspecified models, and in such situations a good conceptualization can help to 

correctly interpret such models. 

3.1.4 Spatial issues 

Travel is a result of the desire for activity participation, constrained by the spatial 

layout of activity opportunities and other temporal and household-level interpersonal 

interactions. While the temporal and household-level constraints are relatively simple to 

conceptualize, the spatial aspect of travel is fairly difficult to characterize. The location 
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choice for non-work trips is, by its very definition, a spatial problem and there are several 

issues associated with that. First, the unit of choice for non-work location decisions is not 

well-defined. Take for instance, a shopping trip. An individual could choose to visit a 

specific store, a shopping mall, or a shopping district. The definition of the choice set for 

this individual is, therefore, fuzzy. Second, non-work location decisions, like most spatial 

choice problems, usually involve a very large set of possible alternatives regardless of the 

spatial definition of the alternative. If the unit of choice is a store, the potential choice set 

would include all the stores in the city where the decision-maker lives (or even beyond). 

If the unit of choice is a zonal aggregate of shopping opportunities (i.e., a zone, as in 

many transportation planning applications), the potential choice set would include all the 

zones in the planning region, which is still a large number (typically in the hundreds). 

Third, due to the continuum of space, the various location choice alternatives are likely to 

share common attractiveness factors (spatial correlation). For instance, we would expect 

zones that are nearer each other to be more substitutable than zones that are further away. 

Fourth, in addition to spatial correlation, spatial competition or agglomeration effects are 

also likely to be in play. In other words, some alternatives benefit from being close to 

other similar alternatives (agglomeration effect) as in a shopping district, while some 

alternatives benefit from being away from other similar alternatives (competition effect) 

by capturing the market in their immediate neighborhood. Fifth, the non-uniformity of 

spatial structures leads to spatial heterogeneity effects that must also be considered. Sixth, 

the development of an operational location choice model may involve some level of 

spatial aggregation of decision-makers (individuals or households into neighborhoods or 
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zones) and elemental units of attraction (stores or parks into zones). In such cases it is 

important to ensure that the spatial effects of aggregation are accounted for. This includes 

the correlation between individuals who live in the same zone, and the sampling variance 

of individuals across zones (see Bhat, 2000). 

3.1.5 Spatial information processing 

In order to develop a good location choice model, the identification of all factors 

(observed and unobserved) that can influence location choice decisions and a grasp of the 

spatial effects must be combined with an understanding of how individuals process 

spatial information. Understanding how individuals process vast quantities of spatial 

information is critical in determining their perspective regarding the spatial layout of 

potential locations, and forms the subject of an entire area of research termed spatial 

cognition (see Gärling et al., 1984, Anooshian and Seibert, 1996, Fotheringham and 

Curtis, 1999).  Individuals could either consider all possible choice alternatives at once, 

or they could process the spatial information hierarchically and decide upon a general 

spatial region prior to picking a specific alternative. The decision rule is accordingly a 

flat-information processing rule or a hierarchical-information processing rule. This 

decision rule can potentially vary across individuals and to some extent across choice 

occasions of an individual. In addition, the boundary defined by individuals who follow 

the flat-information processing rule can also vary across individuals depending on how 

large an area the individual can process. Among individuals who follow the hierarchical-

information processing rule, the number of levels can also vary. 
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3.2 Factors Influencing Location Choice Decisions 

In this section, a comprehensive list of all the observed and unobserved factors 

that influence location choice decisions are compiled based on the discussion in the 

previous section. The following sections enumerate each of the observed and unobserved 

factors, and examine them in detail. 

3.2.1 Time invariant individual preferences 

The first factor to account for in location choice decisions is the time invariant 

preferences that individuals possess for specific locations, attributes of locations or 

general neighborhoods. These preferences could be due to the following observed and 

unobserved factors. 

1. Individual socio-demographics: Socio-demographic characteristics of 

individuals (such as race, age, income, gender, marital status, and employment status) can 

influence their preferences for specific locations, attributes of locations or general 

neighborhoods. For instance, low-income individuals may prefer certain shopping malls 

and neighborhoods for their cost-effectiveness, and younger individuals may prefer “hip” 

shopping districts. It is also conceivable that individuals belonging to a specific socio-

demographic group may prefer a specific location for no apparent reason. Although this 

sounds unreasonable, it is possible that the true reason for this preference is not 

observable. 

2. Unobserved intrinsic preferences: Individuals can also possess unobserved 

intrinsic preferences for certain attributes of locations, specific locations or general 

neighborhoods. The preference that individuals attach to the familiarity of visiting the 
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same location over and over is known as habit persistence or ‘loyalty’. Individuals may 

exhibit loyalty to specific alternatives or to general neighborhoods. For instance, person 

A may prefer to visit the exact same grocery store every time, while person B prefers to 

visit any of the stores in a chain, and person C prefers to visit stores in a particular part of 

the city. It is also possible that individuals possess intrinsically higher or lower 

preferences for the attributes of the alternatives. So, while person A prefers larger 

shopping malls for the variety and browsing opportunities they afford, person B may not 

prefer large shopping malls as she prefers quick and efficient shopping trips. 

3.2.2 Time invariant attractiveness of location attributes 

Another important factor that contributes towards location choice decisions is the 

time invariant attractiveness of the choice alternatives, and the decision-maker’s 

perception of their attractiveness. For instance, in the case of the choice of a shopping 

district the attractiveness of a location for an individual could be a function of the 

following factors: 

1. Distance of the location from the individual’s home or work locations, 

2. Size of the shopping district and the number of shopping opportunities by product 

type, 

3. Average cost of products sold in the district, 

4. The variety of brands of each product available in the district, 

5. Quality of products available in the district, 

6. Availability of parking within the district and parking costs,  

7. Accessibility to the district by public transit modes, 

 46



8. Presence of cafes, restaurants and cinema theaters in the district, 

9. General atmosphere in the district – hip/children and family friendly/old-

fashioned – determined by type of stores, presence of benches and play pens etc., 

10. Racial composition of store owners and employees, 

11. Hours of operation of the shops in the district, and 

12. Safety. 

Some of these factors, such as the cost and quality of products sold or even safety 

in the neighborhood, may vary with time. In such cases the individual’s perception of the 

reliability of the shopping district is an important component of the attractiveness of the 

location. 

3.2.3 Time variant individual preferences 

The time variant preferences of individuals are far more difficult to identify 

though they may play just as important a role as the other factors. The observed and 

unobserved factors that contribute to these preferences are listed below: 

1. Variety-seeking: Some individuals tire of familiarity and soon reach a point of 

satiation or boredom either with specific alternatives, with the attributes of alternatives or 

with entire neighborhoods. Some other individuals may seek variety in a quest to identify 

a preferred alternative. The degree of variety seeking can vary across individuals and 

across choice occasions of an individual. 

2. Unfulfilled desires: The preferences of an individual for a specific alternative, 

for the attributes of alternatives or for a neighborhood can also be influenced by 

unfulfilled desires carried over from past choice occasions. For example, a person who 
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wished to visit a specific store on a previous occasion but could not do so due to time 

constraints will show a high preference to visit the store on the next choice occasion. 

3. Desire to travel: The preferences of an individual may also be influenced by a 

desire to travel. In such a case, the person exhibits a higher preference for alternatives 

that are either located further away and/or are located in the path of scenic 

neighborhoods, despite the availability of similar alternatives that are located closer. 

The degree of habit persistence in individuals can also vary across individuals and 

across choice occasions of an individual. So some people are more loyal and visit the 

same store every single time, while others are less loyal and visit a store only every eight 

times out of ten. The less loyal individuals may sometimes be influenced by unfulfilled 

desires or a desire for travel or variety-seeking. The varying preferences of an individual 

could also be a result of the building up of loyalty over time. 

3.2.4 Time variant attractiveness of location 

The time variant attractiveness of alternatives can be a function of several factors, 

some of which are easily identified. The following is a list of these factors. 

1. Special attraction variables: Special shows at museums and sales at shopping 

malls temporarily increase the attractiveness of the alternative. The preference of an 

individual for these ‘special attractions’, however, can vary across persons and across 

choice occasions of the same person. So some people are more attracted to sale offers in 

shops than others, while some might give in to the temptation of a sale every once in a 

while. 
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2. Advertising: Advertisements through the media, posters and flyers may 

increase or decrease the attractiveness of alternatives. They could have the effect of 

increasing an individual’s awareness of his surroundings by introducing him to 

opportunities whose existence he might not have been aware of. They could also have an 

effect at a subconscious level by slowly ingraining either a desire to visit or a dislike of a 

particular choice alternative. 

3. Spatial learning: People extend the boundaries of their spatial knowledge when 

they travel and socialize. The resultant increase in knowledge of new locations and 

opportunities can also increase the attractiveness of some alternatives. For instance, a 

grocery shop in a neighborhood hitherto unvisited by person A would be fairly 

unattractive to the person as an alternative. But if person A happens to meet friends at her 

local club who like the store very much and share their ideas with her, the attractiveness 

of the store for person A can be expected to increase. 

4. Traffic conditions: The traffic conditions at the time of choice, and the 

corresponding travel time to a location also influence the attractiveness of the location. 

So if a person can only visit the grocery store during the evening peak, he can be 

expected to visit a store situated either near his home or work locations. 

3.2.5 Constraints 

In addition to the various factors discussed thus far individuals are also influenced 

in their location choice by the constraints that come into play during each choice 

occasion. These constraints are listed below. 
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1. Time-budget: Individuals are restricted in their travel-related decisions by the 

availability of time. So depending on when a person has decided to travel, he may be 

more or less sensitive to the distance of the alternative. Time budget constraints vary by 

time of day and day of week. It has been observed, for instance, that people are typically 

less constrained for time during the off-peak hours and weekends. 

2. Mode choice: The choice of mode may also constrain the choice of activity 

location. So individuals who do not have access to a personal automobile may be 

restricted to either shop at locations that are accessible by public transport or shop during 

times when they can get a ride from a friend. 

3. Trip-chaining: The decision to trip chain invariably influences the choice of 

activity location, since individuals typically select locations so that they can accomplish 

all their tasks conveniently. For instance, if a person has decided to combine grocery 

shopping with a social visit to her friend she will be more likely to visit a grocery store 

either near her residence or near her friend’s residence or somewhere between the two 

locations. 

3.2.6 Other decision-makers 

The last factor to consider is the presence of other persons with the decision-

maker. All along we have discussed the various factors that affect the choices made by 

the decision-maker. These discussions were based on the assumption that either the 

decision-maker will be traveling alone, or if there will be multiple individuals traveling 

together the decision-maker is the primary decision-maker in the group whose 

preferences dominate that of the others. However, if the preferences of one or more of the 
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other persons traveling with the decision-maker are important the dynamics of the choice 

process will be significantly different. All the factors discussed in the previous sections 

still hold, but the preferences of the many individuals will now have to be weighed 

against each other combined with information regarding the weight carried by each. 

3.3 Conceptual Framework 

The conceptual framework for non-work location choice presented in this section 

includes all the observed and unobserved factors discussed in section 3.2. This 

comprehensive framework thus attempts to incorporate the various factors and processes 

(contained within the dotted box in Figure 2) that contribute to the observed choice of 

location. 

Figure 4 is an illustration of the proposed conceptual framework. The time 

invariant factors (in dotted boxes) influence the mental map of the individual on every 

choice occasion while the time variant factors (in solid boxes), and the spatial 

information processing rule (in the double-outlined box) are specific to each choice 

occasion. All these factors are considered simultaneously, to represent the cognitive 

processes integrated with the effects of the social and spatial environments and subject to 

constraints and social effects, to generate an observed choice of location. The chosen 

alternative, in turn influences future choices as individuals’ preferences adapt to past 

experiences. The entire mental map on choice occasion t also influences the mental map 

on choice occasion t+1, since past preferences (whether satisfied or not) are a part of an 

individual’s memory and therefore cognition. 
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Figure 4. Conceptual framework of the location choice for non-work activity participation
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CHAPTER 4. MODEL STRUCTURE 

As discussed in chapter 2, several different methodologies have been used in the 

literature for modeling location choice. The objective of this dissertation, of developing a 

comprehensive, unified, choice model structure, is achieved using the random utility 

maximization framework with revealed preference (RP) data. Although a combination of 

stated preference (SP) and RP data is ideal to examine choice behavior and develop 

predictive as well as behaviorally realistic models of location choice, most planning 

efforts typically have access only to RP data. A sound conceptual understanding of 

location choice behavior, combined with a powerful model structure based on RP data 

that can accommodate the varied choice behaviors and cognitive processes, can 

compensate for the disadvantage of the lack of SP data. The conceptual framework 

presented in the previous chapter contributes toward this objective. In this chapter, the 

conceptual framework is supplemented with a powerful model structure that can be used 

to estimate accurate and behaviorally realistic location choice models.  

The following sections discuss the reasons for the choice of a random utility 

maximization framework for the model structure (section 4.1); present the proposed 

model in its entirety and discuss, with examples, the ability of the proposed model to 

subsume a variety of choice behaviors (section 4.2); indicate the several well-known 

forms of models nested within the proposed model (section 4.3); and finally describe the 

estimation procedure for the proposed model (section 4.4). 
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4.1 Random Utility Maximization (RUM) 

The random utility maximization (RUM) framework is based on the simple 

premise that the utility (Uijt) an individual i attributes to a choice alternative j on choice 

occasion t consists of a systematic, deterministic component (Vijt) and a random error 

component ( ijtε ). In other words, 

ijtijtijt VU ε+= ,        Eq. 11 

and individuals are assumed to choose the alternative that maximizes their utility. From a 

philosophical perspective it is intuitive to perceive individuals as utility maximizing 

entities provided we make allowances for mathematically non-rational behavior such as 

variety-seeking, habit persistence, social influences and satisficing. The important point 

here is that such “non-rational” behavior as variety-seeking and habit persistence actually 

enhances the utility perceived by individuals for specific alternatives. So provided the 

specification of the utility function can include varied kinds of behavior, the utility 

maximization principle is an intuitive approach to modeling choice behavior. Moreover, 

the presence of the random error component adds to the behavioral realism of the utility 

function since it ensures that two observationally identical individuals can differ in their 

choice behavior. 

This dissertation research uses a mixed logit model structure based on the RUM 

framework to develop the comprehensive location choice model (refer Bhat, 2002, for a 

description of the mixed logit model). The mixed logit model structure is a powerful and 

flexible tool that utilizes the potential of the RUM framework. For instance, it is capable 

of handling a very large number of choice alternatives (Bhat and Guo, 2004), 
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incorporating spatial interaction effects (Bhat, 2000), including various sources of 

observed and unobserved heterogeneity (Train, 1998) and incorporating evolutionary 

learning behavior through feedback (Miller and O’Kelly, 1983). The only issue with 

using a mixed logit model structure is the associated computational burden of estimation. 

Chapters 5 and 6 discuss this issue in greater detail and present the results of the research 

efforts to improve the efficiency of the estimation process. 

4.2 Proposed Location Choice Model 

The proposed location choice model expresses the utility that an individual i (i = 

1,…,I) associates with an alternative j (j = 1,…,Ji) on choice occasion t (t = 1,…,Ti), as  

jtiiititiitiijiititiitijijt LXCCXDXCCXZU )()()( 321321 ξωωωγβδδδηα ++++++++++=
 

)()( 210210
iitiijtiitiijt XPRECHOXPREATT ζζζχχχ ++++++  

∑
∈

−−− ++++++
''

']~...~~~[ 11)3(
2
1)2(1)1(0

Jj
tijijtij

t
tijtijtij UUUU ερελλλλ  Eq. 12 

where, Zj is a vector of observed time invariant attributes of zone j, 

 Xi is a vector of observed socio-demographic attributes of individual i, 

Cit is a vector of characteristics of choice occasion t for individual i (including 

constraints faced by the individual), 

 Dij is a matrix of distance or time and cost measures between i and j, 

Ljt is a vector of special attraction variables associated with alternative j on choice 

occasion t, 

PREATTijt is a function of the similarities between the attributes of previously 

chosen alternatives (on choice occasions t-1, t-2,…,1) and alternative j, 
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PRECHOijt is a function of the number of times alternative j has been chosen on 

choice occasions t-1, t-2,…,1, 

Ũij(t-1), Ũij(t-2),… are the utilities that individual i associated with alternative j on 

choice occasions prior to occasion t excluding the effects of constraints, and 

},,,,,,,,,,,,,,,,,,,{ 10
210210

321321 ρλλζζζχχχξωωωγβδδδηα itiitiiitiiti  are the 

parameters of the model that are explained in the following paragraphs. 

 The term ii X1δα +  represents the vector of time invariant preferences (or 

dispreferences) of individual i for the attributes Zj of the choice alternative (the 

importance of the time varying terms  and  will de discussed toward the end of this 

section). The vector of parameters 

itη itγ

1δ  represents the extent of the preferences that can be 

captured by observed socio-demographic characteristics of the individual, while iα  

represents the unobserved preferences of the individual that makes her choice behavior 

different from that of an observationally identical individual. The vector of parameters 

iα , therefore, accounts for inter-personal response heterogeneity that is not accounted for 

by other factors such as variety-seeking and the desire for travel. The term ii X1ωβ + , 

similarly, represents the vector of time invariant preferences (or dispreferences) of 

individual i for the time and costs, Dij, associated with the choice alternative. 

 The parameter iξ  represents the time invariant preferences of individual i for the 

special attractions associated with alternative j on choice occasion t. For instance, if a 

shopping mall has a big sale, the individual might want to visit that mall on that particular 

occasion. Constraints might, however, bring the utility of the mall down despite the 

56



‘special attraction’. The vectors of parameters ( 3232 ,,, ωωδδ ) represent the effects of 

constraints on individual i. This could include time budget, trip chaining and mode 

availability constraints. So, given an individual’s time schedule and availability, the 

choice alternatives that require longer distances of travel might incur a disutility large 

enough to overcome their utility due to all other kinds of preferences. 

The terms  and , and the parameters )( 210
iiti Xχχχ ++ )( 210

iiti Xζζζ ++ ),( 10 λλ  

represent the time variant preferences of individual i that are a result of learning, variety 

seeking and unfulfilled desires, respectively. The term  represents the 

preference of individual i for alternative j that is due to the degree of similarity in 

attributes between j and other alternatives chosen by the individual on previous choice 

occasions. For instance, if alternative j is assigned a higher utility due to its proximity to 

other recently chosen locations (all else being identical) the hypothesis is that it is the 

effect of spatial learning. A higher preference exhibited for alternative j due to its 

similarity in some other attribute (such as size of the store, in the case of store choice) 

with recently chosen locations could, on the other hand, be the result of habit persistence 

in preference for that particular attribute. The term  represents the 

preference of individual i for alternative j due to effects of previous choice occasions 

when j was chosen. This captures variety seeking in choice of alternative. An individual 

who exhibits habit persistence is likely to have a higher preference for locations he has 

visited in the past, while one who exhibits variety seeking is likely to have a lower 

preference for locations she has visited in the past. The term 

)( 210
iiti Xχχχ ++

)( 210
iiti Xζζζ ++
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]~...~~~[ 11)3(
2
1)2(1)1(0 ij

t
tijtijtij UUUU λλλλ +++ −−−  represents the carryover effects and unfulfilled 

desires from past choice occasions on the utility individual i associates with alternative j. 

The terms Ũij(t-1), Ũij(t-2),…, Ũij1 are the utilities that individual i associated with 

alternative j on choice occasions prior to occasion t, excluding the effects of constraints. 

The effects of any other factors (that have not already been accounted for) that 

cause intra-personal heterogeneity in observed choices are captured in the utility function 

by  and , the time variant preferences of the individual for the attributes of the 

alternative and for the travel time and costs associated with the alternative. 

itη itγ

The term ijtε  is the random error component of the utility individual i attributes to 

alternative j on choice occasion t. The inclusion of the term ∑
∈ ''

'

Jj
tijερ  captures the spatial 

correlation of alternative j with other choice alternatives that are adjacent to j 

(represented by the set J’), with the parameter ρ  capturing the degree of spatial 

correlation. 

The proposed location choice model is thus a mixed logit model that 

accommodates spatial interaction effects, and response heterogeneity due to various 

observed and unobserved factors including state dependent effects such as variety 

seeking, habit persistence, carryover effects and spatial learning.  

4.3 Models Nested Within the Proposed Model Structure 

As discussed in the previous section, the proposed location choice model in 

equation 12 can capture varied choice behaviors including variety seeking and habit 

persistence, and incorporate various factors such as that of unfulfilled desires, spatial 
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learning, spatial interaction, temporal and modal constraints and special attraction 

variables. Different assumptions imposed on this model will, therefore, result in simpler 

(restricted) models that represent specific circumstances or behavior types. Some of these 

simpler models are presented in the following sections. 

4.3.1 Multinomial Logit Model 

The simple multinomial logit model (MNL) of location choice is a very special 

case of the general model presented in equation 12. The MNL is a result of the following 

assumptions on our general location choice model. 

ββαα == ii , ,          Eq. 13 ξξ =i

0== itit γη           Eq. 14 

010
210210 ======== λλζζζχχχ itiiti       Eq. 15 

0=ρ            Eq. 16 

These are basically the assumptions of no inter-personal heterogeneity (equation 

13), no intra-personal heterogeneity (equation 14), no state dependence or carryover 

effects (equation 15) and no spatial correlation (equation 16). The resulting model is the 

familiar MNL utility expression. 

ijtjtiititiijiititijijt LXCCXDXCCXZU εξωωωβδδδα +++++++++= )()( 321321    Eq. 17 

The MNL model is widely applied in the literature in various fields. Some of the 

applications to modeling location choice include Recker and Schuler, 1981, Shukla and 

Waddell, 1991, and Sermons and Koppelman, 1998, 2001. 
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4.3.2 First-order State Dependence Model 

The assumption that only the immediately previous choice of individuals has an 

effect on their choice behavior is known as first-order state dependence. This assumption 

coupled with the MNL assumptions (equations 13-16) results in the classic first-order 

state dependence model with a variable to indicate the previous choice. This variable is 

typically just a dummy variable indicating whether the specific alternative was the chosen 

alternative on the previous occasion (SAMEijt). The assumptions in this model are 

therefore 

ββαα == ii   , ,  ,       Eq. 18 00  , ζζξξ == ii

0== itit γη ,          Eq. 19 

010
21210 ======= λλζζχχχ ititi , PRECHOijt = SAMEijt , and  Eq. 20 

0=ρ ,           Eq. 21  

which result in the following first-order model. 

)()( 321321 iititiijiititijijt XCCXDXCCXZU ωωωβδδδα +++++++=  

ijtijtjt SAMEL εζξ +++ 0   Eq. 22 

The pure first-order state dependence model in equation 22 can be further 

extended to incorporate spatial interaction effects and unobserved heterogeneity, if 

desired (Miller and O’Kelly, 1983, for instance, estimate a first order state dependence 

model with random parameter heterogeneity). Conversely, under the assumption of 

memory-less choice behavior equation 22 collapses to equation 17 (the MNL model), 

which is the case when the past choices of individuals have no effect on their choice 

behavior. 
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4.3.3 Spatially Correlated Logit Model 

If the assumption of zero spatial correlation in the MNL model of equation 17 is 

relaxed, we get the following spatially correlated logit (SCL) model. 

∑
∈

++++++++++=
''

')()( 321321
Jj

tijijtjtiititiijiititijijt LXCCXDXCCXZU ερεξωωωβδδδα  

Eq. 23 

The use of a Generalized Extreme Value (GEV) structure results in substantial 

computational efficiency gains in the estimation of the SCL model. Bhat and Guo (2004) 

formulated and applied an SCL model that uses a GEV-based structure to accommodate 

correlation in the utility of spatial units. 

4.3.4 Mixed Logit Model 

The MNL model of equation 17, with the relaxation of the zero unobserved inter-

individual heterogeneity assumption, yields the following random parameters Mixed 

Logit (MxL) model. 

ijtjtiiititiiijiititiijijt LXCCXDXCCXZU εξωωωβδδδα +++++++++= )()( 321321  Eq. 24 

There have been several applications of this model in the literature, including 

specific applications to modeling location choice such as Train (1998) and Kemperman et 

al. (2004). 

4.3.5 Mixed Spatially Correlated Logit Model 

The relaxation of both the assumptions of zero spatial correlation and zero 

unobserved inter-individual heterogeneity in the MNL model of equation 17, yields the 

Mixed Spatially Correlated Logit Model (MSCL). 
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∑
∈

++++++++++=
''

')()( 321321
Jj

tijijtjtiiititiiijiititiijijt LXCCXDXCCXZU ερεξωωωβδδδα

 

Eq. 25 

Alongside the SCL model described in section 4.3.3, Bhat and Guo (2004) also 

formulated and applied an MSCL model of residential location choice that uses a GEV-

based structure to accommodate correlation in the utility of spatial units and 

superimposes a mixing distribution over the GEV structure to capture unobserved 

response heterogeneity. 

4.3.6 Bi-level Mixed Logit Model 

The MNL model of equation 17, with the relaxation of the zero unobserved inter- 

and intra-individual heterogeneity assumptions, yields the following Bi-level Mixed 

Logit (BiMxL) model. 

ijtjtiiititiitiijiititiitijijt LXCCXDXCCXZU εξωωωγβδδδηα +++++++++++= )()( 321321  

Eq. 26 

Bhat and Castelar (2002) formulated and applied a unified mixed-logit framework 

for the joint analysis of revealed and stated preference data in their paper. Although their 

model uses a bi-level integration technique it differs in structure from the bi-level model 

presented here. 

4.3.7 Bi-level Mixed Spatially Correlated Logit Model 

The relaxation of the assumptions of zero spatial correlation and zero unobserved 

inter- and intra-individual heterogeneity in the MNL model of equation 17, yields the 

following Bi-level Mixed Spatially Correlated Logit (BiMSCL) model. 

++++++++++= )()( 321321 iititiitiijiititiitijijt XCCXDXCCXZU ωωωγβδδδηα  
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∑
∈

++
''

'

Jj
tijijtjtiL ερεξ   Eq. 27 

The estimation of this model can be achieved using a GEV-based structure to 

accommodate correlation in the utility of spatial units, superimposed with a two-level 

mixing distribution, one to capture unobserved intra-individual response heterogeneity 

and the other for unobserved inter-individual response heterogeneity. 

4.4 Model Estimation 

The vector of parameters to be estimated in a location choice model based on the 

proposed model structure is, as seen in the previous sections, some subset of 

. Of these parameters, 

 vary across individuals and capture unobserved inter-individual 

response heterogeneity, while  vary across choice occasions of an 

individual and capture unobserved intra-individual response heterogeneity. For 

convenience, let ,  and 

},,,,,,,,,,,,,,,,,,,{ 10
210210

321321 ρλλζζζχχχξωωωγβδδδηα itiitiiitiiti

},,,,{ 00
iiiii ζχξβα

},,,{ 11
itititit ζχγη

},,,,{ 00
iiiii ζχξβα=Ψ },,,{ 11

itititit ζχγη=Ω µ  represent the rest 

of the fixed response parameters . },,,,,,,,,{ 10
22

321321 λλζχωωωδδδ ρ  is the 

dissimilarity parameter that captures the degree of spatial correlation. Let the distribution 

of unobserved inter- and intra-individual heterogeneities be multivariate normal, so that 

the elements of  and Ω  are realizations of the random multivariate normally 

distributed variables that comprise 

Ψ

Ψ~  and Ω~  respectively. Let θ  be a vector of true 

parameters characterizing the mean and variance-covariance matrix of Ψ~ , and  σ  be a 

vector of true parameters characterizing the mean and variance-covariance matrix of Ω~ . 
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In its most general form, the utility associated by individual i with zone j on 

choice occasion t is given by ijtijtijt VU ε+= , where 

jtiiititiitiijiititiitijijt LXCCXDXCCXZV )()()( 321321 ξωωωγβδδδηα ++++++++++=
 

)()( 210210
iitiijtiitiijt XPRECHOXPREATT ζζζχχχ ++++++  

]~...~~~[ 11)3(
2
1)2(1)1(0 ij

t
tijtijtij UUUU λλλλ ++++ −−−     Eq. 28 

As per the notations, the parameters  and  in the above 

expression are drawn from the random variables that comprise 

},,,,{ 00
iiiii ζχξβα },,,{ 11

itititit ζχγη

Ψ~  and Ω~ .  may 

therefore be represented as 

ijtV

),~,~( µΩΨijtV . Now the probability function depends on the 

spatial correlation assumption. 

Under the assumption of no spatial correlation, the probability that individual i 

will choose alternative j at the tth choice occasion, conditional on Ψ~ , Ω~  and µ , is the 

usual multinomial logit form (see McFadden, 1978): 

∑
=

ΩΨ

ΩΨ

=ΩΨ J

k

V

V

ijt
ikt

ijt

e

eP

1

),~,~(

),~,~(

),~,~(|
µ

µ

µ         Eq. 29 

The assumption of spatial correlation, on the other hand, combined with a GEV-

based structure leads to the following expression for the probability that individual i will 

choose alternative j at the tth choice occasion, conditional on Ψ~ , Ω~ , µ  and ρ  (see Bhat 

and Guo, 2004). For ease in presentation, let us absorb ρ , the scalar that represents 

spatial correlation, into the parameter vector µ . 
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where iji,α  is an allocation parameter. 

The unconditional probability can be obtained thereafter as: 

∫ ∫
∞

−∞=

∞

−∞=Ω

ΨΩΩΨ=
β

θσµ
~ ~

)/~()/~(),~,~|( dFdFPP ijtijt      Eq. 31 

where F is the multivariate cumulative normal distribution. The dimensionality of the 

above integration is dependent on the number of elements in the Ψ  and Ω  vectors. 

Therefore, the parameters to be estimated under the assumption of zero spatial 

correlation are the σ , θ  and µ  vectors corresponding to equations 29 and 31. Whereas, 

the assumption of spatial correlation yields the model represented by equations 30 and 

31, and the parameters to be estimated include the scalar ρ  representing spatial 

correlation, which has been absorbed into the vector of fixed response parameters µ , and 

the vectors σ  and θ  characterizing the multivariate normal distributions of the 

parameters in  and . To develop the likelihood function for parameter estimation, we 

need the probability of each sample individual i’s sequence of observed choices on 

choice occasions 1,…T

Ω Ψ

i. Conditional on Ψ~ , the likelihood function for individual i’s 

observed sequence of choices is: 

( ) ( )∏ ∫ ∏
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where, Yijt takes the value 1 if individual i chose alternative j on choice occasion t, and 0 

otherwise. 

The unconditional likelihood function of the choice sequence is: 

( ) ∫ ΨΨΨ= ~)|~(),,~(,, dfLL ii θµσµσθ  

       Eq. 33 ( ) ΨΨ
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The log-likelihood function is ∑=
i iLL ),,(ln),,( µσθµσθ . 

The likelihood function in equation 33 is quite different from those in previous 

applications of the mixed logit model, such as Bhat (1998), Hensher (2001), and 

Brownstone and Train (1999). In particular, there are two levels of integration rather than 

one. This arises because, from an estimation standpoint, the random coefficients 

formulation that accommodates taste variations within individuals across choice 

occasions operates at the choice level, while the random coefficients formulation that 

accommodates taste variation across individuals operates at the individual level. 

Quasi-Monte Carlo (QMC) simulation techniques are applied to approximate the 

integrals in the likelihood function and maximize the logarithm of the resulting simulated 

likelihood function across all individuals with respect to θ , σ  and µ . The procedure to 

simulate each individual’s likelihood function ),,( µσθiL , is as follows: (a) For a given 

value of the parameter vector θ , draw a particular realization of Ψ~  from its distribution, 

(b) For a given value of the σ  vector, draw several sets of realizations of Ω~  from its 

distribution, each set corresponding to a choice occasion of the individual, (c) compute 
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the probability of the chosen alternative for each choice occasion (i.e., the likelihood 

function of that choice occasion) at that choice occasion’s set of Ω~  realizations, and for 

the current Ψ~  realization, (d) Average the likelihood functions across the various 

realizations of Ω~  for each choice occasion, (e) Compute the individual likelihood 

function as the product of the averaged likelihood functions across all choice occasions of 

the individual, (f) Repeat steps a through e several times with fresh realizations of Ψ~  and 

new sets of draws of Ω~ , and (g) Compute the average across all individual likelihood 

function evaluations. Mathematically, the individual likelihood function is approximated 

as: 

∑ ∏ ∑ ∏
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where ),,( µσθiSL  is the simulated likelihood function for the ith individual’s sequence 

of choices given the parameter vectors θ , σ  and µ , θ|~ nΨ  is the nth draw (n=1,2,…,N) 

from σθ |~),|~( ng f ΩΨ  is the gn
th draw (gn=1,2,…,M) from )|~( σΩf  at the nth draw of 

Ψ~ , and other variables are as defined earlier. ),,( µσθiSL  is an unbiased estimator of the 

actual likelihood function ),,( µσθiL . Its variance decreases as N and M increase. It also 

has the appealing properties of being smooth (i.e., twice differentiable) and being strictly 

positive for any realization of the draws. 

 The simulated log-likelihood function is constructed as: 
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[∑=
i

iSL SL ),,(ln),,( µσθµσθ ]        Eq. 35 

The parameter vectors θ , σ  and µ  are estimated as the values that maximize the above 

simulated function. Under rather weak regularity conditions, the simulated maximum 

likelihood estimator is consistent, asymptotically efficient, and asymptotically normal 

(see Hajivassiliou and Ruud, 1994; Lee, 1992; McFadden and Train, 1998). 

Depending on the number of parameters in θ  and σ , and the number of draws N 

and M, however, the simulated maximum likelihood estimation of this bi-level model can 

be very time consuming. Most applications of mixed logit models in the literature use 

QMC sequences, such as the Halton sequence, to draw realizations for Ψ~  and Ω~  from 

their normal population distributions. Although Halton sequences are a vast improvement 

over pseudo-Monte Carlo (PMC) methods in the efficiency of the simulated estimation 

process, there are several other QMC sequences that are potentially superior to the Halton 

sequences. The following two chapters present the results of research undertaken to 

identify a more efficient QMC sequence for the purpose. 
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CHAPTER 5. QUASI-MONTE CARLO SEQUENCES 

5.1 Background 

The incorporation of behavioral realism in econometric models helps establish the 

credibility of the models outside the modeling community, and can also lead to superior 

predictive and policy analysis capabilities. As demonstrated in the previous chapter, 

behavioral realism is incorporated in econometric models of choice through the 

relaxation of restrictions that impose inappropriate behavioral assumptions regarding the 

underlying choice process. For example, the extensively used multinomial logit (MNL) 

model has a simple form that is achieved by the imposition of the restrictive assumption 

of independent and identically distributed error structures (IID), which leads to the not-

so-intuitive property of independence from irrelevant alternatives (IIA).  

The relaxation of behavioral restrictions on the model structures, in many cases, 

leads to analytically intractable choice probability expressions, which necessitate the use 

of numerical integration techniques to evaluate the multidimensional integrals in the 

probability expressions. The numerical evaluation of such integrals has been the focus of 

extensive research dating back to the late 1800s. One of the first approaches was the 

extension of the one-dimensional numerical quadrature rules (such as the trapezoid rule 

and the Simpson’s rule) to multidimensional polynomial-based cubature methods. 

However, the theory of polynomial-based cubature methods is complex in multiple 

dimensions, and so these methods are generally not considered for multidimensional 

integration. The only exception is when the multidimensional integral can be transformed 

into the product of ‘s’ single integrals for which well-known quadrature formulas exist, 
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so that an appropriate product formula may be constructed (see Press et al., 1992). 

However, such product formulas are unable to compute integrals with sufficient precision 

and speed in more than 2 dimensions (see Hajivassiliou and Ruud, 1994). This problem 

was alleviated with the development of a new method proposed in the 1940s; the Monte 

Carlo simulation approach; the basic concept for which seems to have existed as early as 

1899.  

The Monte Carlo (MC) approach to evaluating multidimensional integrals 

involves computing the integrand at a sequence of N random points and computing the 

average of the integrand values3. The MC simulation approach has an expected 

integration error of the order of N-0.5, which is independent of the number of dimensions 

‘s’ and thus provides a great improvement over the quadrature-based methods. However, 

an integration error of the order of N-0.5 implies that to obtain one additional decimal digit 

of accuracy, it is necessary to increase the number of draws from the random (MC or 

PMC) sequence by a hundredfold. This realization led to the development of several 

variance reduction techniques for the MC methods, which potentially lead to more 

accurate integral evaluation with fewer draws. One such technique is stratified random 

sampling, such as Latin Hypercube Sampling (or LHS, see McKay et al., 1979). Despite 

the improvements achieved by the variance reduction techniques, the convergence rate of 

MC methods is generally slow for simulated likelihood estimation of choice models.  

                                                 
3 In actual implementation, however, the generation of truly random sequences using random physical 
effects such as radioactive emissions was found to be slow and inconvenient. This led to the use of 
deterministic pseudorandom sequences called pseudo-Monte Carlo (PMC) sequences, which appear 
random when subjected to simple statistical tests. The resulting simulation procedure is known as pseudo-
Monte Carlo (PMC) simulation. 
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Extensive number theory research in the last few decades has led to the 

development of a more efficient simulation method, the quasi-Monte Carlo (QMC) 

method. This method uses the basic principle of the MC method in that it evaluates a 

multidimensional integral by replacing it with an average of the values of the integrand 

computed at discrete points.  However, rather than using random sequences, QMC 

methods use cleverly-crafted, low discrepancy, deterministic quasi-Monte Carlo (or 

QMC) sequences. These QMC sequences are designed to achieve a more even 

distribution of points in the integration space than the MC and PMC sequences. 

Over the years, several different quasi-random sequences have been proposed for 

QMC simulation. Among these are the reverse radix-based sequences (such as the Halton 

sequence) and the (t,s)-sequences (such as the Sobol and Faure sequences). The even 

distribution of points provided by these low discrepancy sequences leads to efficient 

convergence for the QMC method, generally at rates that are higher than the MC method. 

In particular, the theoretical upper bound for the integration error in the QMC method is 

of the order of N-1 for one-dimensional integration4, where N is the number of draws of 

the quasi-random sequence used for the evaluation of the integral. Despite these obvious 

advantages, the QMC method has two major limitations. First, the deterministic nature of 

the quasi-random sequences makes it difficult to estimate the error in the QMC 

simulation procedure (while there are theoretical results to estimate integration error via 

upper bounds with the QMC sequence, these are much too difficult to compute and are 

very conservative upper bounds). Second, a common problem with many low-

                                                 
4 In general the upper bound for the integration error in the QMC method is of the order of  NN s /)(log
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discrepancy sequences is that they exhibit poor properties in higher dimensions. The 

Halton sequence, for example, suffers from significant correlations between the radical 

inverse functions for different dimensions, particularly in the larger dimensions. A 

growing field of research in QMC methods has resulted in the development, and 

continuous evolution, of efficient randomization strategies (to estimate the error in 

integral evaluation) and scrambling techniques (to break correlations in higher 

dimensions). The randomization procedure involves introducing some randomness into 

the quasi-random sequence, while preserving the equidistribution property of the 

underlying sequence (Owen, 1997, 1998; Tuffin, 1996). The resulting sequences, called 

hybrid or randomized QMC (RQMC) sequences, provide better accuracy than PMC 

sequences while also providing the ability to estimate the integration error. Scrambling 

techniques, on the other hand, were devised by number theorists to scramble the numbers 

of different dimensions to break the correlations in the higher dimensions of QMC 

sequences (see, for example, Braaten and Weller, 1979)5. 

Research on the generation and application of randomized and scrambled QMC 

sequences clearly indicates the superior accuracy of QMC methods over PMC methods in 

the evaluation of multidimensional integrals (see Sarkar and Prasad, 1986; Morokoff and 

Caflisch, 1994, 1995; Kocis and Whiten, 1997; Wang and Hickernell, 2000).  In 

particular, the advantages of using QMC simulation for such applications in econometrics 

as simulated maximum likelihood inference, where parameter estimation entails the 

                                                 
5 The reader will note, however, that the terms ‘randomization’ and ‘scrambling’ are not mutually 
exclusive. For instance, Owen’s scrambling technique breaks correlations while introducing randomness at 
the same time. Braaten-Weller scrambling, on the other hand, is a method that does not use any 
randomness. 
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approximation of several multidimensional integrals at each iteration of the optimization 

procedure, should be obvious. However, the first introduction of the QMC method for the 

simulated maximum likelihood inference of econometric choice models occurred only in 

1999 when Bhat tested Halton sequences for mixed logit estimation and found their use 

to be vastly superior to random draws. Since Bhat’s initial effort, there have been several 

successful applications of QMC methods for the simulation estimation of flexible discrete 

choice models, though most of these applications have been based on the Halton 

sequence (see, for example, Train, 1999; Revelt and Train, 2000; Bhat, 2001; Park et al., 

2003; Bhat and Gossen, 2004; Bhat and Srinivasan, 2004). Number theory, however, 

abounds in many other kinds of low-discrepancy sequences that have been proven to 

have better theoretical and empirical convergence properties than the Halton sequence in 

the estimation of a single multidimensional integral. For instance, Bratley and Fox (1988) 

conduct a numerical comparison of the performance of Halton, Faure and Sobol 

sequences in the estimation of a single multidimensional integral. Their results clearly 

indicate that the Faure and Sobol sequences are superior to the Halton sequence in terms 

of accuracy and efficiency. There have also been several numerical studies on the 

simulation estimation of a single multidimensional integral that present significant 

improvements in the performance of QMC sequences through the use of scrambling 

techniques (see Kocis and Whiten, 1997 and Wang and Hickernell, 2000). It is, therefore, 

of interest to examine the performances of the different QMC sequences and their 

scrambled versions in the simulation estimation of flexible discrete choice models. 
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Section 5.2 discusses the specific objectives of this study. Section 5.3 presents the 

background for the generation of alternative sequences. The evaluation framework used 

in this study and the computational results form the contents of chapter 6. 

5.2 Objectives 

As described section 1.2.2, the second broad objective of this dissertation research 

is to compare the performance of different kinds of low discrepancy sequences, and their 

scrambled and randomized versions, in the simulated maximum likelihood estimation of 

the mixed logit class of discrete choice models. Specifically, the extensively used Halton 

sequence and a special case of (t.m.s)-nets known as the Faure sequence are selected. The 

choice of the Faure sequence is motivated by two reasons. First, the generation of the 

Faure sequence is a fairly straightforward and non-time consuming procedure. Second, it 

has been proved that the Faure sequence performs better than the Halton sequence in the 

evaluation of a single multidimensional integral (Kocis and Whiten, 1997). 

The performance of the Halton and Faure sequences is compared against the 

performance of a stratified random sampling PMC sequence (the Latin Hypercube 

Sampling or LHS sequence) by constructing numerical experiments within a simulated 

maximum likelihood inference framework. Further, the numerical experiments also 

include a comparison of scrambled versions of the QMC sequences against their standard 

versions to examine potential improvements in performance through scrambling. The 

performances of the various non-scrambled and scrambled sequences are evaluated based 

on their ability to efficiently and accurately recover the true model parameters. 
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The total number of draws required for the estimation of a mixed multinomial 

logit (MMNL) model on a dataset of Q observations is N×Q, where N is the number of 

draws used to simulate the probabilities for each observation. The N×Q draws of a QMC 

sequence can be generated either as one long sequence of N×Q draws, or as a set of N 

draws which is scrambled Q times to obtain Q different sets of N draws. The first 

approach is referred to in this dissertation as the generation of draws without scrambling 

across observations, and the second approach as the generation of draws with scrambling 

across observations.  In the numerical experiments, both these approaches are compared 

in the generation of each of the standard and scrambled QMC sequences. Another 

important point to note is that the standard and scrambled versions of the QMC and the 

LHS sequences are all generated as uniformly-distributed sequences of points. The 

estimation of an MMNL model, however, requires the simulation of a normal mixing 

distribution and therefore needs as input a low discrepancy normally-distributed sequence 

of points. Two different transformation procedures to convert the uniformly-distributed 

sequences to normally-distributed sequences – the Box-Muller and the Inverse Normal 

transform procedures are tested and compared. 

To summarize, the specific objectives of this research are three-fold. The first 

objective is to experimentally compare the overall performance of the Halton and Faure 

sequences (and their scrambled versions) against each other and against the LHS 

sequence6. The second objective is to compare the efficiency of the QMC sequences with 

                                                 
6 Sandor and Train (2004) perform a comparison of four different kinds of (t,m,s)-nets (created from 
Niederreiter nets), the standard Halton, and random start Halton sequences against simple random draws. 
Their study considers the estimation of a 5-dimensional mixed logit model using 64 QMC draws per 
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and without scrambling across observations. The third objective is to compare the Box-

Muller and the Inverse Normal transform procedures for translating uniformly distributed 

sequences to normally distributed sequences. 

5.3 Background for generation of alternative sequences 

This section describes the various procedures to generate PMC and QMC 

sequences. Specifically, the following sections discuss the generation of PMC sequences 

using the Latin Hypercube Sampling (LHS) procedure (Section 5.3.1), and the generation 

of the QMC sequences proposed by Halton and Faure (Section 5.3.2); the scrambling 

techniques (Section 5.3.3) and randomization techniques (Section 5.3.4) applied in this 

study; the generation of sequences with and without scrambling across observations 

(Section 5.3.5); and basic descriptions of the Box-Muller and Inverse Normal transforms 

(Section 5.3.6). 

5.3.1 PMC Sequences 

The basic idea of the PMC simulation technique is to evaluate a multidimensional 

integral by computing the average value of the integrand over a sequence of N 

pseudorandom points (also referred to as a PMC sequence). PMC sequences can be easily 

generated using standard random number generators available in most software packages. 

A typical PMC simulation uses a simple random sampling (SRS) procedure to generate a 

uniformly distributed PMC sequence over the integration space. An alternate approach 

                                                                                                                                                 
observation, and compares the bias, standard deviation and RMSE associated with the estimated 
parameters. In this study we have conducted numerical experiments both in 5 and 10 dimensions in order 
that the comparisons may capture the effects of dimensionality. For the 5-dimensional mixed logit 
estimation problem we also examined the impact of varying number of draws (25, 125 and 625). Finally, 
we examine the performance of the Faure sequence and LHS method, along with the Halton sequence, and 
consider different scrambling variants of these sequences. 
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known as Latin Hypercube sampling (LHS), that yields asymptotically lower variance 

than SRS, is described in the following section. 

5.3.1.1 Latin Hypercube Sampling 

The LHS method was first proposed as a variance reduction technique (McKay et 

al., 1979) within the context of PMC simulation-based simulation. The basis of LHS is a 

full stratification of the integration space, with a random selection inside each stratum. 

This method of stratified random sampling in multiple dimensions can be easily applied 

to generate a well-distributed sequence. The LHS technique involves drawing a sample of 

size N from multiple dimensions such that for each individual dimension the sample is 

maximally stratified. A sample is said to be maximally stratified when the number of 

strata equals the sample size N, and when the probability of falling in each of the strata 

equals N-1. 

To draw a uniform LHS sequence of size N in K dimensions, the ith sample 

element for dimension j is given by 

),/)(( Npu ijijij ξ−=          Eq. 36 

where, for each j = 1,…..,K, pij (i = 1,…,N) is a random permutation of the numbers 

1,…,N; ijξ  is a uniform distributed random number between 0 and 1; and the K 

permutations and the NK uniform variates ijξ  are mutually independent. The LHS 

sequence is then given by 

),/)(()( NpN
lhs ξψ −=                       Eq. 37 
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where, )( N
lhsψ  is an NxK matrix consisting of N draws of a K-dimensional LHS sequence, p 

is an NxK matrix consisting of K different random permutations of the numbers 1,…,N, 

and ijξ  is an NxK matrix of uniformly distributed random numbers between 0 and 1. 

In essence, the LHS sequence is obtained by slightly shifting the elements of an 

SRS sequence, while preserving the ranks (and rank correlations) of these elements, to 

achieve maximal stratification. Figure 5 presents a maximally stratified and uniformly 

distributed 2-dimensional LHS sequence with N = 6. As can be seen in the figure, each 

stratum in either dimension contains exactly one point. This is achieved by dividing the 

integration space into the required number of strata and randomly selecting a point in 

each stratum. Figure 6 plots the first 100 points of a 2-dimensional LHS sequence. 
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Figure 5. Uniformly-distributed LHS sequence in 2 dimensions (N = 6) 
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Figure 6. First 100 points of a 2-dimensional LHS sequence 

 

5.3.2 QMC Sequences 

The underlying idea of the QMC simulation technique is to evaluate a 

multidimensional integral by computing the average value of the integrand over a 

deterministic set of low-discrepancy points that are generated to be evenly distributed 

over the integration space. Many of the low-discrepancy sequences in use today are 

linked to the van der Corput sequence, which was originally introduced for dimension s = 

1 and base b = 2 (van der Corput 1935a, 1935b). Sequences based on the van der Corput 

sequence are also referred to as the reverse radix-based sequences. To find the nth term, 
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nx , of a van der Corput sequence, let us first write the unique digit expansion of n in base 

b as: 

∑
∞

=

=
0

)(
j

j
j bnan , where 1)(0 −≤≤ bna j  and .    Eq. 38 1+≤≤ JJ bnb

This is a unique expansion of n that has only finitely many non-zero coefficients 

. The next step is to evaluate the radical inverse function in base b, which is defined 

as  

)(na j

∑
∞

=

−−=
0

1)()(
j

j
jb bnanφ .         Eq. 39 

The van der Corput sequence in base b is then given by )(nx bn φ= , for all . 

This idea that the coefficients of the digit expansion of an increasing integer n in base b 

can be used to define a one-dimensional low-discrepancy sequence inspired Halton 

(1960) to create an s-dimensional low-discrepancy Halton sequence by using s van der 

Corput sequences with relatively prime bases for the different dimensions. 

0≥n

An alternative approach to the generation of low-discrepancy sequences is to start 

with points placed into certain equally sized volumes of the unit cube. These fixed length 

sequences are referred to as (t,m,s)-nets, and related sequences of indefinite lengths are 

called (t,s)-sequences. Sobol (1967) suggested a multidimensional (t,s)-sequence using 

base 2, which was further developed by Faure (1982) who suggested alternate 

multidimensional (t,s)-sequences with base . sb ≥

The following sub-sections describe the procedures used in this paper to generate 

the standard Halton and Faure sequences. 
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5.3.2.1 Halton Sequences 

The standard Halton sequence in s dimensions is obtained by pairing s one-

dimensional van der Corput sequences based on s pairwise relatively prime integers, 

 (usually the first s primes) as discussed earlier. The Halton sequence is based 

on prime numbers, since the sequence based on a non-prime number will partition the 

unit space in the same way as each of the primes that contribute to the non-prime number. 

Thus, the nth multidimensional point of the sequence is as follows: 

Sbbb ,...,, 21

))(),...,(),(()(
21

nnnn
sbbb φφφφ = .       Eq. 40 

The standard Halton sequence of length N is finally obtained as  

])(,...,)2(,)1([)( ′′′′= nN
h φφφψ .       Eq. 41 

The Halton sequence is generated number-theoretically as described above rather 

than randomly and so successive points of the sequence “know” how to fill in the gaps 

left by earlier points, leading to a uniform distribution within the domain of integration. 

This is illustrated in Figure 7 where the first 100 points of a 2-dimensional Halton 

sequence are plotted. The points 51 through 100 (denoted by ) clearly fill in the gaps 

left by the previous 50 points (denoted by ). The resulting set of 100 points in Figure 7 

are more evenly distributed than the randomly generated LHS sequence in Figure 6, 

which is observed to exhibit some clumping of points. 
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Figure 7. First 100 points of a 2-dimensional Halton sequence 

 

5.3.2.2 Faure Sequences 

The standard Faure sequence is a (t,s)-sequence designed to span the domain of 

the s-dimensional cube uniformly and efficiently. In one dimension, the generation of the 

Faure sequence is identical to that of the Halton sequence. In s dimensions, while the 

Halton sequence simply pairs s one-dimensional sequences generated by the first s 

primes, the higher dimensions of the Faure sequence are generated recursively from the 

elements of the lower dimensions. So if b is the smallest prime number such that  

and , then the first dimension of the s-dimensional Faure sequence corresponding to 

n can be obtained by taking the radical inverse of n to the base b: 

sb ≥

2≥b
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∑
=
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j
jb bnan

0

111 )()(φ          Eq. 42 

The remaining dimensions are found recursively. Assuming we know the coefficients 

 corresponding to the first (k-1) dimensions, the coefficients for the k)(na j
th dimension 

are generated as follows: 

∑
≥

−=
J

ji

k
ij

ik
j bnaCna ,mod)()( 1         Eq. 43 

where  is the combinatorial function. Thus the next level of 

coefficients required for the k

)!(!/! jijiC j
i −=

th element in the s-dimensional sequence is obtained by 

multiplying the coefficients of the (k-1)th element by an upper triangular matrix C with 

the following elements. 
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These new coefficients  are then reflected about the decimal point to obtain the k)(nak
j

th 

element as follows: 

 ,  ∑
=

−−=
J

j

jk
j

k
b bnan

0

1)()(φ sk ≤≤2       Eq. 44 

This recursive procedure generates the s points corresponding to the integer n in the 

Faure sequence based on b ) . Thus the n( s≥ th multidimensional point in the sequence is 

  ))(),...,(),(()( 21 nnnn S
bbb φφφφ =
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The standard Faure sequence of length N is then obtained in the same manner as the 

standard Halton sequence: 

])(,...,)2(,)1([)( ′′′′= nN
f φφφψ         Eq. 45 

Faure sequences are essentially (t,m,s)-nets in any prime b with . A 

Faure sequence of b

0=≥ t and sb

m points is generated to be evenly distributed over the integration 

space, such that if we plot the sequence in the integration space together with the 

elementary intervals of area b-m, exactly one point will fall in each elementary interval. 

Take, for example, a Faure sequence of 8 (23) points in 2 dimensions that is a (0,3,2)-net 

in base 2, as plotted in Figure 8. Figure 9 consists of four different plots of this Faure 

sequence within the integration space. Each plot presents a different construction of 

elementary intervals of area 2-3 within the same integration space. As seen from these 

plots, exactly one point of the Faure sequence falls within every elementary interval of 

area 2-3 (or 1/8) regardless of how these intervals are constructed, thus achieving an even 

distribution of points over the domain of integration. 

Earlier studies have shown that for higher dimensions, the properties of the Faure 

sequence are poor for small values of n in equation 45 (refer, for example, Fox, 1986). To 

overcome this issue the first 100000 multidimensional points are dropped for all the 

standard and scrambled Faure sequences generated. 
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Figure 8. (0,3,2)-net in base 2 
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Figure 9. (0,3,2)-net in base 2 with elementary intervals of area 1/8 (Modified from Ökten and 
Eastman, 1988) 
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5.3.3 Scrambling Techniques used with QMC Sequences 

Research has shown that the finite parts (for moderate sizes) in higher dimensions 

of many QMC sequences have poor properties, which can be alleviated using suitable 

scrambling techniques. The standard Halton sequence, for instance, suffers from 

significant correlations between the radical inverse functions at higher dimensions. For 

example, the fourteenth dimension (corresponding to the prime number 43) and the 

fifteenth dimension (corresponding to the prime number 47) consist of 43 and 47 

increasing numbers, respectively. This generates a correlation between the fourteenth and 

fifteenth coordinates of the Halton sequence as illustrated in Figure 10. The standard 

Faure sequence, on the other hand, forms distinct patterns in higher dimensions that also 

cover the unit integration space in diagonal strips, thus showing significantly higher 

discrepancies in the higher dimensions. Figure 11 illustrates this in a plot of the fifteenth 

and sixteenth coordinates of the Faure sequence. 

Several methods have been suggested to improve the uniformity of the QMC 

sequences in higher dimensions. Since most of these methods involve some form of 

permutation (or scrambling) of the coefficients in each of the radical inverse functions in 

an effort to redistribute the points of the sequence more uniformly, they are referred to as 

scrambling techniques. This study implements the Braaten-Weller scrambling for Halton 

sequences, and the Random Digit and Random Linear scrambling for Faure sequences. 

Each of these methods is described in greater detail in the following sections. 
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Figure 10. Standard Halton sequence: first 100 points (Source: Bhat, 2003) 
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Figure 11. Standard Faure sequence; first 100 points 
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5.3.3.1 Braaten-Weller scrambling 

Braaten and Weller (1979) describe a permutation of the coefficients  in 

equation 39 that minimizes the discrepancy of the resulting scrambled Halton sequence. 

Their method suggests different permutations for different prime numbers, thus 

effectively breaking the correlation across dimensions. Braaten and Weller have also 

proved that their scrambled sequence retains the theoretically appealing N

)(na j

-1 order of 

integration error of the standard Halton sequence. 

Figure 12 presents the Braaten-Weller scrambled Halton sequence in the 

fourteenth and fifteenth dimensions. The same sequence before scrambling is presented 

in Figure 10. The effectiveness of the Braaten-Weller scrambling method in breaking the 

correlations is evident from these plots. 

To illustrate the Braaten-Weller scrambling procedure, take the 5th number in base 

3 of the Halton sequence, which in the digitized form is 0.21. The suggested permutation 

for the coefficients (0, 2, 1) for the prime 3 is (0, 1, 2), which when expanded in base 3 

translates to 1x3-1 + 2x3-2 = 5/9. The first 8 numbers in the standard Halton sequence 

corresponding to base 3 are 1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9. The Braaten-Weller 

scrambling procedure yields the following scrambled sequence: 2/3, 1/3, 2/9, 8/9, 5/9, 

1/9, 7/9, 4/9. 
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Figure 12. Braaten-Weller Scrambled Halton Sequence: first 100 points 

 

5.3.3.2 Random Digit Scrambling 

The Random Digit scrambling approach for Faure sequences is conceptually 

similar to the Braaten-Weller method, and suggests random permutations of the 

coefficients  to scramble the standard Faure sequence. Matoušek (1998) describes 

this scrambling technique and its theoretical properties in detail. 

)(nak
j

Figure 13 presents the Random Digit scrambled Faure sequence in the fifteenth 

and sixteenth dimensions. The same sequence before scrambling is presented in Figure 

11. A comparison of the plots in these two figures indicates that the Random Digit 
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scrambling technique is very effective in breaking the patterns in higher dimensions and 

generating a more even distribution of points. 
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Figure 13. Random Digit Scrambled Faure Sequence: first 100 points 

 

The Random Digit scrambling technique essentially uses independent random 

permutations for each coefficient in each dimension of the sequence. For example, 

consider the first two elements in a 5-dimensional Faure sequence consisting of the 

following coefficients, 

{ {(2, 1, 0), (2, 3, 1), (2, 4, 2), (4, 2, 3), (1, 0, 4)}, 

   {(1, 0, 0), (3, 2, 1), (0, 2, 4), (0, 4, 4), (4, 4, 0)} }. 
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In each of the 5 dimensions, the vector’s base 5 expansion has 3 digits, which 

implies that we need 15 independent random permutations ),.....,( 151 πππ = . 1π , for 

example, could be the following permutation 

4)0(1 =π ; 2)1(1 =π ; 0)2(1 =π ; 1)3(1 =π ; 3)4(1 =π . 

So when all 15 permutations are applied to the above two elements, we obtain the 

scrambled Faure sequence as follows 

{{( )2(1π , )1(2π , )0(3π ), ( )2(4π , )3(5π , )1(6π ), ( )2(7π , )4(8π , )2(9π ), 

( )4(10π , , )3(12π ), ( )1(13π , )0(14π , )4(15π )}, )2(11π

   {( )1(1π , )0(2π , )0(3π ), ( )3(4π , )2(5π , )1(6π ), ( )0(7π , )2(8π , )4(9π ), 

( )0(10π , , )4(12π ), ( )4(13π , )4(14π , )0(15π )}} )4(11π

For each application, a different digit-scrambled version of the Faure sequence 

should be used. This is achieved by generating new random permutations π  for each run. 

5.3.3.3 Random Linear Scrambling 

The Random Linear Scrambling technique for Faure sequences proposed by Matoušek 

(1998) is a variant of a procedure used by Tezuka (1995) in generating what he called 

“generalized Faure sequences”. This scrambling approach is based on the concept of 

cleverly introducing randomness in the recursive procedure of generating the coefficients 

for each successive dimension. 

Figure 14 presents the Random Linear scrambled Faure sequence in the fifteenth 

and sixteenth dimensions. The same sequence before scrambling is presented in Figure 

11. These plots indicate that the Random Linear scrambling method results in a much 
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more even distribution of points in the fifteenth and sixteenth coordinates than the 

Random Digit scrambling method (Figure 13)7. 
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Figure 14. Random Linear Scrambled Faure Sequence: first 100 points 

 

The Random Linear scrambling approach of Matoušek is easily implemented by 

modifying the upper triangular combinatorial matrix C used in generating Faure 

sequences (see Section 5.3.2.2). A linear combination AC+B is used in the place of the 

                                                 
7 The behavior of the Random Linear scrambling technique seemed to not always be predictable in terms of 
uniformity of coverage. In particular, the results of the Random Linear scrambling method for the 
nineteenth and twentieth dimensions of the Faure sequence were observed to be rather poor as the 
redistribution of points occurs in a fixed pattern. In the seventeenth and eighteenth dimensions, although 
the redistribution of points occurs in a fixed pattern, the pattern results in a more even coverage than in the 
case of the nineteenth and twentieth dimensions. 
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matrix C, where A is a randomly generated matrix and B is a random vector, both 

consisting of uniform random variates U[0, b-1]. 

5.3.4 Randomization of QMC Sequences 

QMC sequences, such as the standard Halton sequence described in Section 5.3.2, 

are fundamentally deterministic and do not permit the practical estimation of integration 

error. Since a comparison of the performance of these sequences necessitates the 

computation of simulation variances and errors, it is necessary to randomize these QMC 

sequences. Randomization of QMC sequences is a technique that introduces randomness 

into a deterministic QMC sequence while preserving the equidistribution property of the 

sequence (see Shaw, 1988; Tuffin, 1996). This study uses Tuffin’s randomization 

procedure, which is based on the following concept. Let )( Nψ  be a QMC sequence of 

length N over the s-dimensional unit cube and consider any s-dimensional uniformly 

distributed vector u in the s-dimensional unit cube. Construct a new sequence  

whose elements 

)( Nχ

nsχ  are obtained as sns u+ψ  if 1≤+ sns uψ , and 1−+ sns uψ  if 

1>+ sns uψ . Tuffin proves that the sequence  so formed is also a QMC sequence of 

length N over the s-dimensional unit cube. Intuitively, the vector u simply shifts the 

points of each coordinate of the original QMC sequence 

)( Nχ

)( Nψ  by a certain value. Since 

all the points within each coordinate are shifted by the same amount, the new sequence 

will preserve the equidistribution property of the original sequence (see Bhat, 2003, for a 

detailed explanation of the randomization procedure). 
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In the numerical experiments in this dissertation research, Tuffin’s randomization 

is used to perform 20 estimation runs for each test scenario. The results of these 20 

estimation runs are used to compute the relevant statistical measures. 

5.3.5 Generation of Draws With and Without Scrambling Across Observations 

The previous sections describe the process of generation of the LHS sequence, 

and the standard and scrambled versions of the Halton and Faure sequences. This section 

examines the generation of these sequences specifically in the context of the estimation 

of an MMNL model. 

The simulated maximum likelihood estimation of an MMNL with a K-

dimensional mixing distribution involves generating a K-dimensional PMC or QMC 

sequence for a specified number of draws ‘N’ for each individual in the dataset. 

Therefore estimating an MMNL model on a dataset with Q individuals will require an 

N×Q K-dimensional PMC or QMC sequence, where each set of N K-dimensional points 

computes the contribution of an individual to the log-likelihood function. A PMC or 

QMC sequence of length N×Q can be generated either as one continuous sequence of 

length N×Q or as Q independent sets of length N each. In the case of PMC sequences, 

both these approaches amount to the same since a PMC sequence is identical to a random 

sequence with each point of the sequence being independent of all the previous points. In 

the case of QMC sequences, Q independent sets of length N can be generated by first 

constructing a sequence of length N and then scrambling it Q times, which is known as 

generation with scrambling across observations. The other alternative of generating a 
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continuous QMC sequence of length N×Q is known as generation without scrambling 

across observations. 

QMC sequences generated with and without scrambling across observations 

exhibit different properties. A QMC sequence generated with scrambling across 

observations leads to a higher degree of randomness in simulating the contribution of the 

individuals to the log-likelihood function. This method of generation can also be 

expected to result in time savings especially when dealing with high-dimensions and a 

large number of individuals. A continuously generated QMC sequence of length N×Q, on 

the other hand, leads to an averaging out of simulation errors across individuals. This 

occurs due to the basic property of QMC sequences in that each set of N points fills in the 

gaps left by the set of N points used for the previous individuals thereby causing the 

simulated probabilities to be negatively correlated across observations (Train, 1999; Bhat, 

2003). 

In this study the performance of the various scrambled and standard QMC 

sequences generated both with and without scrambling across observations are examined. 

5.3.6 Box-Muller and Inverse Normal Transforms 

The standard and scrambled versions of the Halton and Faure sequences (with or 

without scrambling across observations), and the LHS sequence are generated to be 

uniformly distributed over the multidimensional unit cube. Simulation applications, 

however, may require these sequences to take on other distributional forms. For example, 

the estimation of the MMNL model described in Section 6.1.1 requires normally 

distributed multivariate sequences that span the multidimensional domain of integration. 
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The transformation of the uniformly distributed LHS and QMC sequences to normally 

distributed sequences can be achieved using either the inverse standard normal 

distribution or one of the many approximation procedures discussed in the literature, such 

as the Box-Muller Transform (1958), Moro’s method and Ramberg and Schmeiser 

approximation (1972). The performances of the inverse normal and the Box-Muller 

transforms are compared in this study. 

If Y is a K-dimensional matrix of length N*Q containing the uniformly 

distributed LHS or QMC sequence, the inverse normal transformation yields 

, where X is a normally distributed sequence of points in K-dimensions. The 

Box-Muller method approximates this transformation as follows. The uniformly 

distributed sequence of points in Y are transformed to the normally distributed sequence 

X using the equations 

)(1 YX −Φ=

ijjiij YYX log2)2cos( )1( −= +π  and ijjiji YYX log2)2sin( )1()1( −= ++ π , (11) 

for all i = 1, 2, … N*Q, and j = 1, 3, 5, … K-1, assuming that K is even. If K is odd, then 

simply generate an extra column of the sequence and perform the Box-Muller transform 

with the K+1 even columns. The (K+1)th column of the transformed matrix X can then be 

dropped. 
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CHAPTER 6. COMPARISON OF ALTERNATE QMC SEQUENCES 

6.1 Evaluation framework 

The performance of the sequences presented in the previous chapter is evaluated 

within the context of the simulated maximum likelihood estimation of the MMNL model. 

This section first discusses the simulated maximum likelihood estimation of the MMNL 

model (Section 6.1.1), then presents the experimental design used in generating a 

simulated dataset of 2000 observations (Section 6.1.2), and finally describes the scenarios 

tested in this study and the evaluation criteria used in comparing the performance of these 

sequences (Section 6.1.3). The computational results are presented in Section 6.2. All the 

numerical experiments in this study are implemented using the GAUSS matrix 

programming language. 

6.1.1 Simulated Maximum Likelihood Estimation of the MMNL Model 

In the numerical experiments in this research, a random-coefficients interpretation 

of the MMNL model structure is used. However, the results from these experiments can 

be generalized to any model structure with a mixed logit form. The random-coefficients 

structure essentially allows heterogeneity in the sensitivity of individuals to exogenous 

attributes. The utility that an individual q associates with alternative i is written as: 

qiqiqqi xU εβ += '          Eq. 46 

where,  is a vector of exogenous attributes, qix qβ  is a vector of coefficients that varies 

across individuals with density )(βf , and qiε  is assumed to be an independently and 

identically distributed (across alternatives) type I extreme value error term. With this 
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specification, the unconditional choice probability of alternative i for individual q is 

given by the following mixed logit formula: 

)()|()()( βθββθ d fLP qiqi ∫
∞

∞−

= ,   
∑

=

j

x

x

qi
qj

qi

e
eL '

'

)(
β

β

β ,     Eq. 47 

where, Pqi is the probability that individual q chooses alternative i, β represents 

parameters which are random realizations from a density function f(.) also known as the 

mixing distribution, and θ  is a vector of underlying moment parameters characterizing 

f(.). While several density functions may be used for f(.), the most commonly used is the 

normal distribution with θ  representing the mean and variance. 

The objective of simulated maximum likelihood inference is to estimate the 

parameters ‘θ ’ of the mixing distribution by numerical evaluation of the choice 

probabilities for all the individuals using simulation. Using ‘N’ draws from the mixing 

distribution f(.), each labeled β n, n = 1,…,N,  the simulated probability for an individual 

can be calculated as 

∑
=

=
Nn

n
qiqi LNSP

,...,1

)()/1()( βθ .        Eq. 48 

)(θqiSP  has been proved to be an unbiased estimate of )(θqiP  whose variance decreases 

as the number of draws ‘N’ increases. The simulated log-likelihood function is then 

computed as 

∑
=

=
Qq qi

SPSLL
,...,1

))(ln()( θθ ,         Eq. 49 
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where i is the chosen alternative for individual q. The parameters ‘θ ’ that maximize the 

simulated log-likelihood function are then calculated. Properties of this estimator have 

been studied, among others, by Lee (1992) and Hajivassiliou and Ruud (1994). 

6.1.2 Experimental Design 

The data for the numerical experiments conducted in this study were generated by 

simulation. Two sample data sets were generated containing 2000 observations (or 

individuals q in equation 46) and four alternatives per observation. The first data set was 

generated with 5 independent variables to test the performance of the sequences in 5 

dimensions. The values for each of the 5 independent variables for the first two 

alternatives were drawn from a univariate normal distribution with mean 1 and standard 

deviation of 1, while the corresponding values for each independent variable for the third 

and fourth alternatives were drawn from a univariate normal distribution with mean 0.5 

and standard deviation of 1. The coefficient to be applied to each independent variable 

for each observation was also drawn from a univariate normal distribution with mean 1 

and standard deviation of 1 (i.e., )1,1(~ Nqiβ , q = 1, 2, … 2000 and i = 1, …, 4). The 

values of the error term, qiε  in equation 46, were generated from a type I extreme value 

(or Gumbel) distribution, and the utility of each alternative was computed. The 

alternative with the highest utility for each observation was then identified as the chosen 

alternative. The second data set was generated similarly but with 10 independent 

variables to test the performance of the sequences in 10 dimensions. 
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6.1.3 Test Scenarios 

This study uses the simulated datasets described above to numerically evaluate 

the performance of the LHS sequence, and the standard and scrambled versions of the 

Halton and Faure sequences within the MMNL framework. First random-coefficients 

mixed logit models are estimated in 5 and 10 dimensions, using a simulated estimation 

procedure with 20,000 random draws (N = 20,000 in equation 48). The resulting 

estimates are declared to be the “true” parameter values. The various sequences are then 

evaluated by computing their abilities to recover the “true” model parameters. This 

technique has been used in several simulation-related studies in the past (see Bhat, 2001; 

Hajivassiliou et al., 1996). 

The test sequences include the standard Halton, Braaten-Weller scrambled 

Halton, standard Faure, Random Digit Scrambled Faure, Random Linear Scrambled 

Faure, and LHS sequences. For each of these six sequences, cases with 25, 125 and 625 

draws (N in equation 48) are tested for 5 dimensions and cases with 100 draws for 10 

dimensions. 

6.2 Computational results 

The estimation of the ‘true’ parameter values served as the benchmark to compare 

the performances of the different sequences. The performance evaluation of the various 

sequences was based on their ability to recover the true model parameters accurately. 

Specifically, the evaluation of the proximity of estimated and true values was based on 

two performance measures: (a) root mean square error (RMSE), and (b) mean absolute 

percentage error (MAPE). Further, for each performance measure two properties were 
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computed: (a) bias, or the difference between the mean of the relevant values across the 

20 runs and the true values, and (b) total error, or the difference between the estimated 

and true values across all runs8. 

One general note before the presentation and discussion of the results. The Box-

Muller transform method to translate uniformly distributed sequences to normally 

distributed sequences resulted in higher bias and total error than the inverse normal 

transform method almost universally for all the scenarios tested (this is consistent with 

the finding of Tan and Boyle, 2000). Therefore only the results of the inverse transform 

procedure are presented here. 

The computational results have been grouped into four tables. Table 4 presents 

the results corresponding to the two evaluation criteria (RMSE and MAPE) for the test 

scenarios with 25 draws for 5 dimensions; Table 5 presents the results for the test 

scenarios with 125 draws for 5 dimensions; Table 6 presents the results for the test 

scenarios with 625 draws for 5 dimensions; and Table 7 presents the results for the test 

scenarios with 100 draws for 10 dimensions.  In each table, the first column specifies the 

type of sequence used, which will be one of the following (a) the standard Halton, (b) the 

Braaten-Weller scrambled Halton, (c) the standard Faure, (d) the Random Digit 

scrambled Faure, (e) the Random Linear scrambled Faure, and (f) the LHS sequence. The 

second column indicates whether the sequence is generated with or without scrambling 

                                                 
8 The simulation variance was also computed, i.e.; the variance in relevant values across the 20 runs and the 
true values. However, the results of those computations are not discussed here in order to simplify 
presentation and also because the total error captures simulation variance. 
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across observations (“Scrambling” or “No Scrambling”). The remaining columns list the 

RMSE and MAPE performance measures for the estimators in each case. 

In the following sections, the results are first examined and interpreted separately 

for each of the 25 draws, 125 draws, 625 draws and 100 draws (10 dimensions) cases; 

and then finally the overall trends in the results are examined. 

6.2.1 5 Dimensions and 25 draws 

Table 4 indicates that the standard and scrambled Halton sequences generated 

with scrambling across observations yield lower RMSE and MAPE bias and total error 

than the corresponding sequences generated without scrambling across observations. A 

similar result holds for the standard Faure sequence. However, for the scrambled Faure 

sequences, the sequences generated without scrambling across observations yield about 

equal or lower RMSE and MAPE total error than the sequences that are generated with 

scrambling across observations. 

Table 4. Evaluation of ability to recover model parameters (5 dimensions, 25 draws) 

RMSE MAPE 
Sequence Type 

Scrambling 
across 

observations 
Bias 

Total 
error Bias 

Total 
error 

No Scrambling 0.2987 0.3275 30.6976 30.6976Standard Halton 
Scrambling 0.2817 0.2997 29.7409 29.7409
No Scrambling 0.3157 0.3515 32.5745 32.5745Braaten-Weller Scram. Halton 
Scrambling 0.2948 0.3259 30.4528 30.4544
No Scrambling 0.2586 0.2869 27.2551 27.2551Standard Faure 
Scrambling 0.2374 0.2887 24.0570 24.0937
No Scrambling 0.2955 0.3332 28.8420 28.8420Random Digit Scram. Faure 
Scrambling 0.2947 0.3541 29.8144 29.8144
No Scrambling 0.2677 0.2978 27.9082 27.9082Random Linear Scram Faure 
Scrambling 0.2848 0.3209 29.4035 29.4035

LHS  N/A 0.2650 0.3059 27.7668 27.7668
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Overall, the following inferences can be made regarding the performance of the 

sequences in 5 dimensions and with 25 draws: 

(a) The standard Halton sequence yields lower RMSE and MAPE bias and total 

errors than the Braaten-Weller scrambled Halton sequence. 

(b) The standard Faure sequence also yields lower RMSE and MAPE bias and total 

errors than the corresponding scrambled versions. 

(c) The standard Faure sequence performs better than the corresponding standard 

Halton sequence on all counts. The LHS sequence performs at about the same 

level as all other sequences except the standard Faure. 

(d) The standard Faure sequence with scrambling across observations provides the 

best results in the overall. 

 

6.2.2 5 Dimensions and 125 draws 

Table 5 indicates that, for the standard Halton sequence, the case without 

scrambling across observations provides lower bias for both the RMSE and MAPE cases, 

but slightly higher total error. For the scrambled Halton, the case without scrambling 

across observations dominates (this latter result is the reverse of what was found in the 25 

draws case). For the Faure sequences, no scrambling across observations provides better 

results than scrambling across observations for the standard and Random Digit scrambled 

Faure versions. However, the reverse is the case for the Random Linear Faure sequence. 
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Table 5. Evaluation of ability to recover model parameters (5 dimensions, 125 draws) 

RMSE MAPE 
Sequence Type 

Scrambling 
across 

observations 
Bias 

Total 
error Bias 

Total 
error 

No Scrambling 0.0538 0.0672 5.6565 6.0881Standard Halton 
Scrambling 0.0560 0.0627 5.9892 6.0709
No Scrambling 0.0383 0.0560 4.0664 5.1062Braaten-Weller Scram. Halton 
Scrambling 0.0445 0.0646 4.7313 5.9334
No Scrambling 0.0393 0.0553 4.1668 4.5773Standard Faure 
Scrambling 0.0455 0.0630 4.8227 5.3210

No Scrambling 0.0298 0.0489 3.1551 4.2517Random Digit Scram. Faure 
Scrambling 0.0432 0.0563 4.5803 5.0752
No Scrambling 0.0364 0.0534 3.9041 4.4663Random Linear Scram Faure 
Scrambling 0.0310 0.0450 3.2947 4.1762

LHS N/A 0.0715 0.0789 7.5294 7.6367
 

Overall, the following inferences can be made regarding the performance of the 

sequences in 5 dimensions and with 125 draws: 

(a) The Braaten-Weller scrambled Halton sequence, in general, does better than the 

standard Halton, a reversal from the case with 25 draws. 

(b) The Braaten-Weller scrambled Halton sequence with no scrambling across 

observations is the “winner” across all standard and scrambled Halton sequences. 

(c) The scrambled versions of the Faure sequence perform better than the standard 

Halton, the scrambled Halton, and the standard Faure sequences. 

(d) The Random Linear scrambled Faure sequence with scrambling across 

observations performs the best in terms of total error. In terms of bias, the 

Random Digit scrambled Faure sequence with no scrambling across observations 

performs the best, although the Random Linear scrambled sequence with 

scrambling across observations comes a close second. 

(e) The LHS yields the highest bias and total error across all the sequences 
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6.2.3 5 Dimensions and 625 draws 

As shown in Table 6, we observe that the standard and scrambled Halton 

sequences yield lower bias and total error when they are generated with scrambling 

across observations rather than without scrambling across observations. The same result 

also extends to the standard Faure and Random Linear scrambled Faure sequences, but 

the case without scrambling across observations does better than with scrambling across 

observations for the Random Digit scrambled Faure. 

The following inferences can be made regarding the overall performance of the 

sequences in 5 dimensions and with 625 draws: 

(a) The Braaten-Weller scrambled Halton does better than the standard Halton in 

terms of bias. But in terms of total error, the Braaten-Weller scrambled Halton is 

better than the standard Halton only for the case when there is no scrambling 

across observations. 

Table 6. Evaluation of ability to recover model parameters (5 dimensions, 625 draws) 

RMSE MAPE 
Sequence Type 

Scrambling 
across 

observations 
Bias 

Total 
error Bias 

Total 
error 

No Scrambling 0.0088 0.0189 0.8701 1.6096Standard Halton 
Scrambling 0.0065 0.0161 0.6021 1.3830

No Scrambling 0.0069 0.0177 0.7053 1.5221Braaten-Weller Scram. Halton 
Scrambling 0.0060 0.0170 0.6013 1.4086
No Scrambling 0.0070 0.0131 0.7148 1.1309Standard Faure 
Scrambling 0.0047 0.0129 0.3596 1.0538
No Scrambling 0.0025 0.0138 0.2354 1.1987Random Digit Scram. Faure 
Scrambling 0.0059 0.0174 0.5914 1.4629
No Scrambling 0.0049 0.0161 0.4702 1.4698Random Linear Scram Faure 
Scrambling 0.0035 0.0152 0.3423 1.2542

LHS N/A 0.0152 0.0311 1.5890 2.7455
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(b) Curiously, the standard Halton with scrambling across observations does the best 

among the many Halton sequences in terms of total error. However, the Braaten-

Weller scrambled Halton with scrambling across observations does almost as 

well. 

(c) The total error values in Table 6 indicate that the standard Faure performs better 

than the scrambled versions. However, the bias associated with the standard Faure 

is generally higher than the best alternatives among the scrambled Faure 

sequences. Among the scrambled Faure sequences, the Random Digit scrambled 

Faure with no scrambling across observations has the lowest bias and total error 

values. The Random Linear scrambled Faure sequence with scrambling across 

observations is the next best alternative among the scrambled Faure sequences. 

(d) All the Faure sequences clearly perform better than the Halton sequences in terms 

of yielding lower bias and total error. 

(e) The LHS shows the worst performance across all test scenarios, with the highest 

bias and total error. 

(f) The standard and scrambled Faure sequences exhibit the best performance. While 

it is not possible to clearly pick a “winner” among the many Faure sequences, it 

should be noted that the Random Digit scrambled Faure with no scrambling 

across observations has the lowest bias among all the sequences. The standard 

Faure sequences yield the lowest total error across all the alternatives, but also 

yield amongst the highest bias values. 
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6.2.4 10 Dimensions and 100 draws 

The results in Table 7 indicate that the standard Halton sequence exhibits a better 

performance when it is generated with scrambling across observations, whereas the 

scrambled Halton sequence performs better when it is generated without scrambling 

across observations. The standard and scrambled Faure sequences generally exhibit better 

performances when they are generated without scrambling across observations. 

The following conclusions can be drawn regarding the overall performance of the 

sequences from Table 7: 

(a) The standard Halton sequence with scrambling across observations performs 

better than the standard Halton without scrambling across observations; however, 

the reverse is the case for the Braaten-Weller scrambled Halton sequence. 

Overall, the Braaten-Weller scrambled Halton with no scrambling across 

observations appears to do best. 

Table 7. Evaluation of ability to recover model parameters (5 dimensions, 625 draws) 

RMSE MAPE 
Sequence Type 

Scrambling 
across 

observations 
Bias 

Total 
error Bias 

Total 
error 

No Scrambling 0.2224 0.2692 26.6145 26.8211Standard Halton 
Scrambling 0.1953 0.2489 23.5067 23.9490
No Scrambling 0.1681 0.2500 19.8661 21.4625Braaten-Weller Scram. Halton 
Scrambling 0.3297 0.3666 30.2559 30.5939
No Scrambling 0.1969 0.3114 22.1754 26.5580Standard Faure 
Scrambling 0.2337 0.3068 27.7484 29.8256
No Scrambling 0.1844 0.2577 21.8181 22.4525Random Digit Scram. Faure 
Scrambling 0.1998 0.2585 24.5396 24.7051
No Scrambling 0.1740 0.2266 20.9043 21.2949Random Linear Scram Faure 
Scrambling 0.1802 0.2679 20.7861 22.5148

LHS N/A 0.2213 0.3013 25.6583 26.5579
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(b) Among the standard and scrambled Faure sequences, the Random Linear 

scrambled Faure sequence performs better than the Random Digit scrambled 

Faure sequence, which in turn performs better than the standard Faure sequence. 

(c) Interestingly, in 10 dimensions, the LHS sequence performs comparably with the 

standard Halton sequence. 

(d) There is no clear winner in this case. In terms of total error, the Random Linear 

scrambled Faure sequence with no scrambling across observations clearly 

performs the best. In terms of bias, on the other hand, the Braaten-Weller 

scrambled Halton with no scrambling across observations performs the best. The 

Random Linear scrambled Faure with no scrambling across observations is, 

however, close on its heels. 

6.2.5 General trends 

The different test scenarios of the QMC sequences in 5 dimensions clearly 

indicate that a larger number of draws results in lower bias, and total error. However, the 

margin of improvement decreases as the number of draws increases. The following are 

other key observations from our analysis. 

1. At very low draws, the standard versions of the Halton and Faure sequences 

perform better than the scrambled versions. However, the bias and total error of 

the estimates is very high and the research results strongly recommend against the 

use of 25 or less draws in simulation estimation. 

2. The scrambled versions of both the Halton and Faure sequences perform better 

than the standard versions of the sequences at 125 draws (for 5 dimensions) and 
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100 draws (for 10 dimensions). At 625 draws for 5 dimensions, the standard 

versions of both the Halton and Faure sequences perform marginally better than 

their scrambled versions in terms of total error but yield much higher bias. 

Overall, using about 100-125 draws with scrambled versions of QMC sequences 

seems appropriate (though one would always gain by using a higher number of 

draws at the expense of more computational cost). 

3. The Faure sequence generally performs better than the Halton sequence across 

both 5 and 10 dimensions. The only exception is the case of 100 draws for 10 

dimensions, which indicates that in terms of bias values the Braaten-Weller 

scrambled Halton sequence with no scrambling across observations performs 

slightly better than the Random Linear scrambled Faure with no scrambling 

across observations. However, this difference is marginal and the Random Linear 

scrambled Faure clearly yields the lowest total error. 

4. Among the Faure sequences, the Random Linear and Random Digit scrambled 

Faure sequences perform better than the standard Faure (except the case with 25 

draws for 5 dimensions, which is anyway not recommended because of high bias 

and total error values; see point 1 above). However, between the two scrambled 

Faure versions there is no clear winner. 

5. The Random Linear scrambled Faure with scrambling across observations 

performs better than without scrambling across observations for 5 dimensions (for 

125 and 625 draws). For 10 dimensions, the Random Linear scrambled Faure with 
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scrambling across observations performs slightly less well than without 

scrambling across observations. However, this difference is rather marginal. 

6. The Random Digit scrambled Faure with no scrambling across observations 

performs better than with scrambling across observations in all the cases. 

7. Overall, this analysis concludes that the Random Linear and Random Digit 

scrambled Faure sequences are amongst the most effective QMC sequences for 

simulated maximum likelihood estimation of the MMNL model. While both the 

scrambled versions of the Faure sequence perform well in 5 dimensions, the 

Random Digit scrambled Faure with no scrambling across observations performs 

marginally better. In 10 dimensions, on the other hand, the Random Linear 

scrambled Faure with no scrambling across observations yields the best 

performance both in terms of bias and total error. 

8. This study also strongly recommends the use of the inverse transform to convert 

uniform QMC sequences to normally distributed sequences. 
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CHAPTER 7. EMPIRICAL APPLICATION 

The comprehensive non-work location choice model proposed in chapter 4 relates 

spatial interaction, cognitive processes, preferences and decision rules to the observed 

choice of location through the incorporation of, among other factors, observed and 

unobserved sources of inter- and intra-individual heterogeneity, feedback and spatial 

correlation. Such an accurate and behaviorally realistic model structure places significant 

computational burden on the estimation process. Chapters 5 and 6 address this issue and 

present the results of research undertaken to identify the most efficient Quasi-Monte 

Carlo (QMC) sequence for simulated maximum likelihood estimation (SMLE). This 

chapter presents an empirical application of the proposed location choice model for non-

maintenance shopping activities that utilizes the most efficient QMC sequence identified 

for SMLE. 

For an empirical application to fully utilize the potential of the comprehensive 

model structure developed, a rich data source is needed. The chapter begins with section 

7.1 that presents the data sources used in this application. Section 7.2 describes the 

process of sample formation from the various data sources, while section 7.3 presents a 

description of the sample. Section 7.4 describes the model formulations that were 

estimated, section 7.5 presents the categories of variables available for model estimations, 

and section 7.6 discusses the results of the model estimations. The chapter concludes with 

section 7.7, which summarizes the results and discusses policy implications of the 

estimated location choice models. 
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7.1 Data Sources 

The richness of the location choice model structure developed as part of this 

dissertation research necessitates the use of a rich data source that can utilize the potential 

of the proposed model structure. Table 8 lists the criteria to be satisfied by the data source 

in order to exploit the proposed model structure. 

Table 8. Criteria to be satisfied by a data source in order to capture various aspects of the proposed 
model structure 

Criteria  Necessary to… 
Multi-day Data To capture (observed & unobserved) intra-personal 

heterogeneity & state dependence 
Detailed Non-work Activity 

Information 
Capture effects of occasion-specific constraints 

and attributes; Also the proposed model structure 
is designed only for non-work activities 

Detailed Socioeconomic Data To capture effects of observed sources of inter- 
and intra- personal heterogeneity 

Zonal Layout, Level-of-Service and 
Land-Use Data 

To capture spatial effects 

Substantial Data Size Ensure correct/stable estimation results, and 
capture different types of heterogeneity 

Metropolitan/City Study Region To capture ‘typical’ non-discretionary activity 
patterns 

Geocoded Locations To match individual activity-patterns with the 
spatial layout 

 

In order to estimate a location choice model that captures the effects of past 

choices (state dependence), inter- and intra-individual heterogeneity, a multi-day data 

source is an absolute requirement. While multi-day data surveys are not common in the 

United States (the 2-day Bay Area Travel Survey being an exception), there are a handful 

of multi-day datasets from Europe that consist of 5 or more weeks of data. These are: (a) 

the Uppsala Travel Survey from Uppsala, Sweden, (b) the Mobidrive Survey from the 

cities of Halle and Karlsruhe in Germany, (c) the SVI Leisure Project from Zürich, 
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Switzerland, (d) the SVI Stabilität Diary from the canton of Thurgau in Switzerland, (e) 

the ISA Rättfart GPS Study from Borlänge, Sweden, and (f) the AKTA GPS Study from 

Copenhagen, Denmark (see Schönfelder and Axhausen, 2004, for further details on each 

of these datasets). The ISA Rättfart and AKTA GPS studies are not of much use in the 

current context since they do not specifically identify non-work activities. Of the 

remaining multi-day data sources, the Mobidrive data is the by far the largest in terms of 

the number of survey respondents and the number of reported trips. The Mobidrive 

Survey is also one of the most recent studies, contains data on multiple non-work activity 

types, and includes geocoded location information. 

The Mobidrive data is thus the best choice for this empirical application, and is 

the primary data source used. The Mobidrive data is the result of a 6-week travel survey 

conducted in the Fall of 1999 in the cities of Karlsruhe (West Germany) and Halle (East 

Germany), as part of a larger Mobidrive project sponsored by the Federal Republic of 

Germany Ministry of Research and Education. The main objective of this travel survey 

data collection was to facilitate a better understanding of the rhythms, routines, and habits 

of individuals over an extended time period of several weeks. The data collection effort 

was initiated by contacting a sample of households randomly selected from a phonebook 

database in each of the two cities. A subsample of this larger sample of households was 

selected for administration of the travel survey, based on eligibility considerations and 

willingness to participate (only households who did not plan to take a vacation of more 

than a week during the survey period and who did not have children under the age of 6 

years were deemed eligible). 
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The final sample from the survey included information on 361 individuals from 

162 households. Of these, 44 individuals from 23 households in Karlsruhe participated in 

a pre-test survey, and 317 individuals from 139 households in Karlsruhe and Halle 

participated in the main survey. The structure and administration procedures were 

identical in the two surveys. Both the pre-test and main surveys were conducted in two 

waves to capture seasonal variations in activity-travel patterns and to avoid the Christmas 

and summer holidays. The pre-test travel survey was administered between May 31st and 

July 25th, and the main survey was administered between September 13th and November 

14th. Slightly less than 10% of the total sample (approximately 15% of eligible 

households) participated. Basic information on non-participating households was 

collected, and research by Axhausen et. al., 2000, has revealed no significant self-

selection or fatigue effects. 

The survey itself comprised three parts. First, a face-to-face interview was 

administered where the interviewer assisted the household in filling out three forms 

(gathering information on the sociodemographic characteristics of households and their 

members, and car fleet size and composition). Second, a travel diary was mailed to each 

household and individuals in the household were asked to maintain a record of all their 

trips and out-of-home activities over a 6-week period. Finally, an attitude questionnaire 

was administered to participants at least 16 years old once the final week’s diary had 

been turned in (see Schlich et al., 2000, and Axhausen et al., 2000, for more information 

on the survey data). 
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While the Mobidrive data provides the non-work activity and travel information, 

other secondary sources of data that describe the location alternatives are also required 

for the estimation of the location choice models. The study area (Karlsruhe core city) 

consists of 69 transportation analysis zones (TAZs), which form the choice set. The 

models estimated in this study predict the individual choice of travel to these zones and 

not to specific shopping opportunities (or elemental alternatives) within the zones. This 

approach was adopted for several reasons. One, the use of elemental alternatives would 

create a substantial number of alternatives in the individual’s choice set. This would pose 

infeasible data processing requirements, and make the modeling process and definition of 

alternatives difficult. Two, for transportation planning, the desired end-result is the 

prediction of trip-interchanges between zonal pairs, not between elemental attraction 

alternatives. From this standpoint, location choice models with zonal alternatives are easy 

to apply for forecasting. Three, the attributes of zones are more easily available to the 

travel demand modeler than the attributes of the elemental units of attraction. Moreover, 

individuals are likely to perceive elemental units of attraction in clusters (such as 

shopping districts), and as the size of TAZs are shrinking they may actually match the 

perceived units of attraction. Figure 15 presents the zonal configuration of the study area, 

with the shaded zones representing the Central Business District (CBD). 

The secondary data sources used in this empirical application include Geographic 

Information Systems (GIS) files of the transportation network and zonal land-use for the 

core-city of Karlsruhe. In addition, the empirical analysis uses data on personal business, 
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shopping, recreational and physical activity opportunities in each of the zones in 

Karlsruhe, collected from the yellow pages.9

The following section describes how the primary and secondary sources of data 

were assembled to prepare a dataset for the empirical application. 

 

 
Figure 15. Study Area – 69 core city zones in Karlsruhe 

                                                 
9 All the land use data was obtained from Dr. Kay Axhausen and Dr. Stefan Schönfelder, at the Institute for 
Transport Planning and Systems, Swiss Federal Institute of Technology, Zürich. 
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7.2 Sample Formation 

The trip file from the Mobidrive data contains a detailed record of all the trips and 

out-of-home activities for every individual over a 6-week period. The activity types are 

classified into 21 categories, including non-work activities such as meeting friends, 

cultural excursions, active sports, daily shopping and shopping for non-daily demand. Of 

these non-work categories, shopping for non-daily demand (or non-maintenance 

shopping) was selected for the empirical application of the proposed location choice 

model. The choice of non-work activity type was motivated by two main reasons. First, 

daily shopping, non-maintenance shopping and meeting friends are the most frequently 

occurring non-work activities in the Mobidrive data (see Table 9) and therefore provide 

the richest data sources for model estimations. Second, among these three frequently 

occurring non-work activities, non-maintenance shopping is likely to involve the most 

variety and discretion in the choice of location (see section 7.3). 

The first step in sample formation, therefore, was to extract the non-maintenance 

shopping activity occasions from the Mobidrive trip file. The second step was to 

assemble the zonal land-use and level-of-service data from the GIS files. This involved 

the generation of inter-zonal distances through network skims and the extraction of zonal 

land-use variables such as area of the zone, area under mixed development, area of 

roadways, and presence of daycares and churches in the zone. This data provides the 

zonal attributes and impedances that form the explanatory variables in the estimated 

location choice models. Since the GIS files, and therefore the land-use and level-of-

service data, were available only for Karlsruhe, it was decided to focus the study on 
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survey respondents from Karlsruhe. The third step, then, was to extract the non-

maintenance shopping activities undertaken specifically by Karlsruhe survey respondents 

from the dataset generated in the first step. This corresponded to 1052 choice occasions 

undertaken by 190 individuals belonging to 93 households in Karlsruhe. The fourth step 

was to clean this dataset. This involved two primary tasks. First, since land-use and level-

of-service data was available only for the 69 core city zones10, only individuals who live 

in the core city of Karlsruhe were retained. Also, non-maintenance shopping activities 

undertaken at external zone locations were excluded for the same reason. Second, the 

individuals who participated in only one non-maintenance shopping activity during the 

survey period were excluded. This was done in order to ensure that state dependence and 

intra-personal heterogeneity effects can be inferred from the data. The cleaned dataset 

comprises 903 non-maintenance shopping activity occasions undertaken by 158 

individuals belonging to 81 households. The final step in sample formation was to append 

the zonal land-use and impedance data to the cleaned dataset. 

7.3 Exploratory Analysis 

The final sample thus consists of the non-maintenance shopping episodes 

undertaken by 158 individuals during a 6-week period, with zonal descriptors for each of 

the alternative locations. Of these 158 individuals, 55% are female, 53% are employed 

and 75% have a driving license; 15% belong to single-person households, 28% to couple 

                                                 
10 The core city zones correspond to the 69 zones in the GIS zonal file for Karlsruhe. The other destination 
zones in the Mobidrive data are external zones visited by the survey respondents. 
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families and 31% to nuclear families. The average household income of the sample is 

4800 DM. 

The 158 individuals participated in 2-29 non-maintenance shopping episodes 

during the survey period and visited between 1 and 10 unique zones, indicating 

reasonable intra-individual heterogeneity in location choice. A measure termed as the 

variety-seeking ratio11 was computed for the sample of 158 individuals, in order to 

quantify the degree to which people exhibit heterogeneity in choosing a non-maintenance 

shopping location. This measure was defined as the number of unique zones visited 

during the survey period divided by the number of non-maintenance shopping trips 

undertaken by the individual during the survey period. The variety-seeking ratio thus 

ranges between 0 and 1 (excluding 0 and including 1), and a higher value implies a 

greater heterogeneity in location choice. The average variety-seeking ratio for non-

maintenance shopping in the assembled sample of 158 individuals is 0.71. 

An examination of the average variety-seeking ratios for the various non-work 

activity types in the Mobidrive data further strengthens the argument for the choice of 

non-maintenance shopping for this empirical application. Among the non-work activity 

types that have a sizeable number of reported trips, say greater than 200, non-

maintenance shopping has the highest average variety-seeking ratio of 0.71 (see Table 9). 

Visits to discos, pubs, restaurants, cinemas etc. is very close behind, and has an average 

                                                 
11 Although the measure is termed ‘variety-seeking ratio’, it only captures the degree of heterogeneity in the 
choice of location. This heterogeneity could be the result of a variety of causes including the effects of 
constraints and variety-seeking choice behavior. 
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variety-seeking ratio of 0.70. However, the total number of reported trips (across both 

Halle and Karlsruhe) is much higher for non-maintenance shopping. 

Table 9. Variety-Seeking Ratio by Non-work Activity Type for the Mobidrive Study Area (Halle + 
Karlsruhe) 

Non-work Activity Type Number of 
Persons 

Total Number of 
Trips 

Variety-
Seeking 

Ratio 
Non-Maintenance Shopping 292 1806 0.71 
Disco/Pub/Restaurant/Cinema 204 1296 0.70 
Meeting Friends 288 2586 0.60 
Active Sports 163 1316 0.45 
Shopping: Daily Demand 321 4631 0.41 
Group/Club Meeting 111 749 0.41 
Excursion: Nature 49 157 0.89 
Excursion: Culture 52 152 0.84 
Meeting Relatives & Family 15 44 0.78 

 

A regression of the variety-seeking ratio for non-maintenance shopping against 

person and household sociodemographic characteristics captures the correlations between 

the sociodemographics and observed heterogeneity. 

Table 10. Variety-Seeking Ratio Regression Model 

Variables Parameter t-stat 
Constant 0.755 8.158 
Female (dummy) -0.050 -1.303 
Number of working hours -0.001 -0.993 
Self-Employed (dummy) -0.111 -1.329 
Number of motor vehicles 0.068 3.035 
National (dummy) -0.085 -1.027 
Distance Home to Bus stop (km) 7.36E-05 1.498 
Number of children less than 16 years -0.030 -1.394 
Roommate Household (dummy) -0.330 -2.038 
R-Squared 0.122 
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The regression results in Table 10 indicate that females exhibit lower 

heterogeneity in the choice of shopping location than males, while individuals of foreign 

origin exhibit higher heterogeneity than nationals (as inferred from the coefficient on the 

national dummy). The coefficients on the employment characteristics are intuitive. They 

indicate that individuals who work longer hours have lower variety-seeking ratios, as do 

individuals who are self-employed and consequently handle more responsibilities. On a 

similar note, people with children less than 16 years are typically more constrained by 

their responsibilities and therefore exhibit lower variety-seeking ratios. Individuals in 

roommate households also exhibit less heterogeneity in the choice of non-maintenance 

shopping location. This is also expected, since individuals who choose to live in 

roommate households are usually students or people who prefer to live frugally for a 

variety of reasons, and are hence likelier to exhibit low variety-seeking ratios. Finally, the 

coefficients on the variables that represent mode availability suggest that individuals who 

own motor vehicles and live far from bus-stops exhibit more heterogeneity in their 

location choice. Moreover, the variety-seeking ratio increases with the number of motor 

vehicles owned and the distance to the bus-stop. This is also intuitive, since individuals 

who own more vehicles are likelier to live farther away from public transport and such 

individuals also tend to visit more locations that are rendered accessible to them on 

account of their higher mobility. 

Although the regression model presents intuitive correlations between 

sociodemographic characteristics and the degree of heterogeneity in location choice, the 

heterogeneity in the choice of location may be more than just the result of variety-seeking 
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behavior and in order to gain an understanding of choice behavior it is important to 

understand the sources of heterogeneity. Heterogeneity in choice could be the result of 

several choice-occasion specific constraints that cannot be captured by the cross-sectional 

analysis in this regression model. For instance, the choice of non-maintenance shopping 

location on a specific choice occasion could be influenced by the decision to chain the 

trip with other activities, such as dinner at a particular restaurant. Heterogeneity could 

also be the result of spatial correlation effects or variety-seeking behavior. In order to 

capture the different sources of heterogeneity in the choice of location, it is necessary to 

estimate location choice models in a panel context. The following sections describe the 

estimation of location choice models, based on the proposed model structure, that attempt 

to capture the various observed and unobserved sources (from the analyst’s viewpoint) of 

heterogeneity. 

7.4 Model Formulation 

The non-maintenance shopping location choice models estimated as a part of this 

empirical application are based on the comprehensive model structure proposed in 

chapter 4.  A panel data set of non-maintenance shopping episodes undertaken by 158 

individuals in the city of Karlsruhe was assembled for the purpose. 

Several models were estimated starting with the simple MNL model, extending to 

the Mixed Logit (MxL) model, and leading up to the Mixed Spatially Correlated Logit 

(MSCL) model and the Bi-level MxL and MSCL models. The MNL model that does not 

incorporate state dependence, unobserved heterogeneity or spatial correlation, is 

estimated as the benchmark against which all other models are evaluated. This MNL 
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model, which is the most restrictive case of the proposed model structure, is widely used 

in location choice modeling. The other model types estimated are also derived from the 

general model structure of equation 12 by placing suitable restrictions. The model 

estimation procedures for these model types are described in chapter 4 (Section 4.4). All 

estimations and computations were carried out using the GAUSS programming language. 

Gradients of the log simulated likelihood function with respect to the parameters were 

also coded.  

7.5 Variable Specifications 

The assembled panel dataset consists of a variety of variables that can be used to 

describe the utility associated with each of the alternative core city zones in the various 

model formulations. The variables include several zonal size and non-size attributes, as 

well as interactions of the socio-demographic characteristics of individuals and attributes 

of the choice occasions with these zonal attributes. These variables can be categorized 

into five groups, each of which is discussed in sections 7.5.1-7.5.5. Section 7.5.6 

describes the creation of the state dependence (feedback) variable. 

7.5.1 Zonal Size Attributes 

There are several zonal size attributes in the assembled dataset that capture the 

attractiveness of a zone. These include: (i) zonal area, (ii) area of the zone covered by 

parking, (iii) area of the zone covered by roadways, (iv) area of the zone covered by 

industries, (v) area of the zone covered by mixed development, (vi) area of the zone 

covered by commercial/trade related enterprises, (vii) population of the zone, (viii) 

number of shopping opportunities, (ix) number of personal business opportunities, (x) 
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number of recreational opportunities, and (xi) number of physical activity opportunities. 

Since zonal size attributes indirectly represent the elemental alternatives within a zone, it 

is important to introduce them in a form that ensures that a large zone will have a higher 

probability of being chosen than a small zone. For this purpose a non-linear composite 

size measure is introduced, which is defined as follows (a similar approach is used in 

Pozsgay and Bhat, 2002). 

...)ln( 433221 ++++= jjj1jj xxxxizeCompositeS δδδ ,     Eq. 50 

where, (x1j, x2j, x3j, x4j, …) are zonal size attributes, and ,...),,( 321 δδδ  are parameters to 

be estimated. Nonlinear-in-parameters MNL (NLMNL) models with the following utility 

expression were estimated and the best specification was identified for the composite size 

term (see Table 11). 

ijtjijtijt  SizeComposite distance U εβα ++=       Eq. 51 

 
Table 11. Best specification model for the composite size term 

NLMNL Variables 
Param. t-stat. 

Distance from home   -1.771 -28.518 
Composite Size 0.638 17.125 
     No. of shopping opportunities 2.558 1.810 
     No. of recreational opportunities  89.779 2.514 
     Area covered by mixed developments  17.088 2.341 
Number of observations 62307 
Log-likelihood at convergence -3052.663 

 
 
The best specification for the composite size includes the number of shopping and 

recreational opportunities and the area of the zone covered by mixed developments. In 

other words, a zone with a greater number of shopping and recreational opportunities and 
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more mixed developments is assigned a larger composite size. The other zonal size 

measures did not turn out to be significant in this specification, largely due to the 

correlations between these size measures. In all the models estimated in this study, the 

composite size computed with the parameters and variables identified in Table 11 is used 

as the only zonal size measure.  

7.5.2 Zonal Non-size Attributes 

The zonal non-size attributes include population density, central district (dummy), 

presence of daycare (dummy), and presence of church (dummy). These variables, along 

with the composite size, are introduced in the location choice model as measures of zonal 

attractiveness. The church dummy was excluded from the model specifications because 

nearly every zone in the study area has a church and this correlation could show up in the 

models as a spurious effect. All the other non-size attributes were significant in all the 

models estimated. 

7.5.3 Zonal Impedance Measures 

The distance of each zone from the home zone of an individual is treated as the 

impedance associated with that zone. Zones which are farther away from an individual’s 

home zone will be less preferred, and therefore distance from home is a good impedance 

(or cost) variable. 

Several studies have shown that people tend to visit locations that are either 

around their home or around their school/work place for non-work activities (see 

Schonfelder and Axhausen, 2002). In keeping with this, the distance of zones from the 

work/school zone of an individual is introduced as another impedance measure. 
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7.5.4 Socioeconomic and Demographic Variables 

The zonal composite size and non-size attributes, and impedance measures were 

interacted with individual sociodemographic characteristics in order to capture the 

observed sources of heterogeneity across individuals in their response to the zonal 

attributes and impedance. For instance, the parameter estimated on the distance interacted 

with gender captures the difference in sensitivities to the impedance measure across 

males and females. 

The various sociodemographic characteristics available in the data include age, 

gender, marital status, employment status, schooling status, number of working hours, 

education level, license (dummy), club member (dummy), national (dummy), number of 

season tickets held, household size, number of children less than 16 years in the 

household, number of dogs, number of automobiles, number of cycles, household type, 

household income, and distance from home to bus-stop, light rail transit (LRT) and heavy 

rail. 

After some testing, the household type variables were excluded from the model 

specifications as they are correlated with other household attributes such as household 

income and marital status. All the other sociodemographic variables were tested in the 

model estimations and the significant ones retained. 

7.5.5 Attributes of Choice Occasions 

The zonal size and non-size attributes, and impedance measures were also 

interacted with attributes of the choice occasions in order to capture time-dependent 

effects and constraints on the response to zonal attributes and impedances. For example, 
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the parameters estimated on distance interacted with time of day variables capture the 

time-varying effects of time-budget constraints on the sensitivity to impedance. 

The attributes of the choice occasions available in the data include time-of-day, 

day of week, mode chosen, trip chaining (dummy), number of household members 

accompanying, number of others accompanying, and activity duration. The mode chosen 

for the choice occasion was found to be highly correlated with the choice of zone. 

However, after careful consideration it was decided to exclude this variable from the 

models estimated, since mode and destination are often simultaneous decisions and 

warrant joint mode-destination choice models. Moreover, due to the strong correlation 

between mode and the chosen zone other explanatory variables drop out when mode is 

introduced rendering it difficult to estimate a good model for forecasting purposes. 

7.5.6 Feedback Effects 

The proposed model structure (equation 12) introduces feedback through the 

terms PREATTijt, which is a function of the similarities between zone j and the attributes 

of previously chosen alternatives (on choice occasions t-1, t-2,…,1), and PRECHOijt, 

which is a function of the number of times zone j has been chosen on choice occasions t-

1, t-2,…,1. In this application, a simple form of the PRECHOijt function, SAMEijt (first-

order Markov process, first order state dependence, or lagged choice indicator), is used, 

which is defined as follows (a similar approach is used by Miller and O’Kelly, 1983). 

⎩
⎨
⎧

=
otherwise

1-t occasion choice the on chosen j was zone if
SAMEijt ,0

,1
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The introduction of feedback in a model must be accompanied by a specification 

of the initial conditions. This study makes two assumptions regarding the initial 

conditions. First, it assumes that the survey respondents have reached a state of 

equilibrium in their activity-travel patterns, so that the survey period will be 

representative of their choice behavior. Second, the first non-maintenance shopping 

episode of each survey respondent is assumed to be exogenous to the estimation. 

7.6 Empirical Results 

As discussed earlier, a basic MNL model of location choice was estimated as the 

benchmark against which all other models were compared. This model (MNL-1) does not 

incorporate state dependence, unobserved heterogeneity or spatial correlation. An MNL 

model with state dependence (MNL-2) was also estimated to assess the impacts of 

introducing feedback. Table 12 presents the best specification MNL models of both 

types. The MNL-1 model was then extended to incorporate unobserved inter-individual 

response heterogeneity, which yields a mixed logit model (MxL-1). MxL-2 is a mixed 

logit model that incorporates state dependence in addition to unobserved inter-individual 

response heterogeneity. The results of the MxL model estimations are presented in Table 

13. The MNL-2 and MxL-2 models were further extended to incorporate spatial 

correlation effects, which produces the SCL and MSCL models respectively. However, as 

the SCL and MSCL model estimation results in Table 14 indicate, there are no significant 

spatial correlation effects in the study area. Finally, Bi-level Mixed Logit (BiMxL) 

models that incorporate unobserved intra-individual response heterogeneity, in addition 

to the unobserved inter-individual response heterogeneity in the MxL models, were also 
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estimated. The results of the BiMxL model estimations are, however, not presented here 

since unobserved intra-individual heterogeneity in the assembled sample was found to be 

insignificant. 

The following sections compare the above models in terms of their goodness-of-

fit, discuss the responses of individuals to the zonal attractiveness measures and the 

sensitivities to the zonal impedance measures, and examine the effects of feedback and 

unobserved inter-individual heterogeneity. The potential causes for the absence of 

unobserved intra-individual heterogeneity and spatial correlation are also discussed here. 
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Table 12. Best Specification Multinomial Logit Models of Location Choice 

MNL-1 MNL-2 
Variables  

Param. t-stat. Param. t-stat. 
Attributes of Alternatives     
   Composite Size of zone 0.254 4.465 0.196 2.996 
   Central District (dummy) 0.953 2.758 0.833 2.067 
   Presence of Daycare (dummy) -0.286 -3.001 -0.195 -1.85 
   Population density of  zone -0.008 -9.274 -0.006 -6.371 
Impedance Measures assoc. with Alternatives     
   Distance of zone from home -3.397 -4.959 -3.078 -3.446 
   Distance of zone from work/school -1.035 -8.95 -0.861 -6.626 
Interactions between Zonal Attributes and Impedance     
   Composite Size of zone x Distance of zone from home 0.283 4.994 0.253 3.831 
Interactions of Zonal Attributes with Sociodem.     
   Composite Size of Zone x     
             Low Income (dummy) 0.273 4.209 0.211 2.869 
            No. Season Tickets 0.125 2.291 0.108 1.71 
   Central District (dummy) x     
            Age -0.009 -1.837 -0.005 -0.954 
            Female (dummy) 0.262 1.729 0.045 0.263 
   Presence of Daycare (dummy) x     
            Married (dummy) x No. of children 0.688 2.661 0.592 2.236 
Interactions of Zonal Attributes with Choice Occasion-
Specific Constraints     

   Composite Size of Zone x     
            Trip Chained with Other Shopping (dummy) -0.149 -2.363 -0.112 -1.608 
   Central District (dummy) x     
            Trip Chained with Other Activities (dummy) 0.323 1.973 0.349 1.846 
             No. of other Accompanying Adults -0.331 -2.846 -0.400 -2.862 
            Activity Duration 0.003 3.137 0.005 3.765 
            Time-of-day Morning (dummy) -0.409 -1.882 -0.428 -1.723 
Interactions of Zonal Impedance with Sociodem.     
   Distance of zone from home x     
            Female (dummy) -0.491 -2.94 -0.267 -1.363 
            Retired (dummy) -0.796 -3.05 -0.877 -2.73 
             No. of Cars owned 0.373 2.801 0.211 1.336 
             National (dummy) -0.859 -1.665 -0.624 -0.884 
             No. Season Tickets owned -0.425 -2.046 -0.288 -1.203 
Interactions of Zonal Impedance with Choice Occasion-
Specific Constraints     

   Distance of zone from home x     
             Weekend (dummy) -0.499 -2.315 -0.462 -1.957 
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             No. of other Accompanying Adults 0.468 3.714 0.362 2.546 
            Trip Chained with Other Activities (dummy) 0.446 2.657 0.398 2.058 
            Activity Duration 0.003 3.062 0.002 1.401 
State Dependence Variables     
   First Order Feedback of Chosen Zone   1.675 17.529 
Number of observations   62307 51405 
Log-likelihood at convergence  -2862.371 -2250.881 
Log-likelihood at equal shares  -3823.398 -3154.409 
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Table 13. Best Specification Mixed Logit Models of Location Choice 

MxL-1 MxL-2 Variables  
Param. t-stat. Param. t-stat. 

Attributes of Alternatives     
   Composite Size of zone 0.346 4.756 0.283 3.439 
   Central District (dummy) 1.133 2.469 0.820 1.395 
   Presence of Daycare (dummy) -0.525 -3.337 -0.332 -1.897 
   Population density of  zone -0.017 -8.841 -0.012 -6.532 
Impedance Measures assoc. with Alternatives     
   Distance of zone from home -3.363 -3.71 -3.002 -2.797 
   Distance of zone from work/school -1.087 -5.837 -0.975 -4.628 
Interactions between Zonal Attributes and Impedance     
   Composite Size of zone x Distance of zone from home 0.239 3.855 0.195 2.484 
Interactions of Zonal Attributes with Sociodem.     
   Composite Size of Zone x     
             Low Income (dummy) 0.264 2.472 0.212 1.604 
            No. Season Tickets 0.161 1.845 0.151 1.514 
   Central District (dummy) x     
            Age -0.014 -2.087 -0.008 -1.028 
            Female (dummy) 0.204 0.892 0.113 0.413 
   Presence of Daycare (dummy) x     
            Married (dummy) x No. of children 0.699 0.999 0.665 0.878 
Interactions of Zonal Attributes with Choice Occasion-
Specific Constraints     
   Composite Size of Zone x     
            Trip Chained with Other Shopping (dummy) -0.188 -2.427 -0.145 -1.744 
   Central District (dummy) x     
            Trip Chained with Other Activities (dummy) 0.273 1.318 0.316 1.411 
             No. of other Accompanying Adults -0.331 -2.165 -0.403 -2.148 
            Activity Duration 0.003 2.557 0.006 3.786 
            Time-of-day Morning (dummy) -0.187 -0.696 -0.280 -0.969 
Interactions of Zonal Impedance with Sociodem     
   Distance of zone from home x     
            Female (dummy) -0.248 -1.011 -0.021 -0.078 
            Retired (dummy) -0.780 -2.517 -0.815 -2.297 
             No. of Cars owned 0.254 1.287 0.077 0.322 
             National (dummy) -0.831 -1.314 -0.602 -0.800 
             No. Season Tickets owned -0.391 -1.479 -0.160 -0.534 
Interactions of Zonal Impedance with Choice Occasion-
Specific Constraints     
   Distance of zone from home x     
             Weekend (dummy) -0.544 -1.933 -0.511 -1.710 
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             No. of other Accompanying Adults 0.460 2.541 0.409 2.146 
            Trip Chained with Other Activities (dummy) 0.411 1.998 0.398 1.595 
            Activity Duration 0.004 1.903 0.003 1.171 
State Dependence Variables     
   First Order Feedback of Chosen Zone   1.361 10.531 
Std. Deviation  in Response to     
   Composite Size of zone 0.297 6.153 0.174 2.257 
   Central District (dummy) 0.693 4.092 0.648 3.191 
   Presence of Daycare (dummy) 0.789 4.049 0.647 2.452 
   Population density of  zone 0.013 5.641 0.010 3.112 
   Distance of zone from home 0.603 3.228 0.506 1.846 
   Distance of zone from work/school 0.688 2.760 0.377 1.040 
   First Order Feedback of Chosen Zone   0.549 3.335 
Number of observations   62307 51405 
Log-likelihood at convergence  -2786.861 -2223.456 
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Table 14. Best Specification Spatially Correlated Logit Models of Location Choice 

SCL MSCL 
Variables  

Param. t-stat. Param. t-stat. 
Attributes of Alternatives     
   Composite Size of zone 0.201 2.128 0.321 2.551 
   Central District (dummy) 0.837 1.482 0.838 1.036 
   Presence of Daycare (dummy) -0.282 -1.663 -0.339 -1.252 
   Population density of  zone -0.012 -6.614 -0.019 -5.829 
Impedance Measures assoc. with Alternatives     
   Distance of zone from home -3.632 -3.586 -3.622 -2.669 
   Distance of zone from work/school -0.871 -4.881 -1.005 -3.95 
Interactions between Zonal Attributes and Impedance     
   Composite Size of zone x Distance of zone from home 0.390 4.554 0.292 2.546 
Interactions of Zonal Attributes with Sociodem.     
   Composite Size of Zone x     
             Low Income (dummy) 0.275 2.082 0.302 1.619 
            No. Season Tickets 0.147 1.581 0.261 1.843 
   Central District (dummy) x     
            Age -0.006 -0.855 -0.009 -0.827 
            Female (dummy) 0.118 0.609 0.314 0.904 
   Presence of Daycare (dummy) x     
            Married (dummy) x No. of children 0.932 1.135 0.915 0.995 
Interactions of Zonal Attributes with Choice Occasion-
Specific Constraints     
   Composite Size of Zone x     
            Trip Chained with Other Shopping (dummy) -0.157 -1.733 -0.220 -2.01 
   Central District (dummy) x     
            Trip Chained with Other Activities (dummy) 0.448 1.758 0.381 1.242 
             No. of other Accompanying Adults -0.457 -2.353 -0.469 -1.903 
            Activity Duration 0.008 4.644 0.009 4.931 
            Time-of-day Morning (dummy) -0.385 -1.383 -0.214 -0.569 
Interactions of Zonal Impedance with Sociodem     
   Distance of zone from home x     
            Female (dummy) -0.395 -1.772 -0.069 -0.218 
            Retired (dummy) -1.057 -3.337 -0.955 -2.151 
             No. of Cars owned 0.240 1.269 0.070 0.242 
             National (dummy) -1.103 -1.478 -0.927 -1.029 
             No. Season Tickets owned -0.210 -0.853 -0.052 -0.147 
Interactions of Zonal Impedance with Choice Occasion-
Specific Constraints     
   Distance of zone from home x     
             Weekend (dummy) -0.665 -2.329 -0.689 -1.966 
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             No. of other Accompanying Adults 0.421 2.204 0.494 2.272 
            Trip Chained with Other Activities (dummy) 0.529 2.277 0.558 1.921 
            Activity Duration 0.003 1.357 0.003 1.225 
State Dependence Variables     
   First Order Feedback of Chosen Zone 2.409 12.563 1.970 8.032 
Std. Deviation  in Response to     
   Composite Size of zone   0.221 1.463 
   Central District (dummy)   0.901 2.413 
   Presence of Daycare (dummy)   0.580 1.162 
   Population density of  zone   0.012 2.342 
   Distance of zone from home   0.612 1.973 
   Distance of zone from work/school   0.451 0.972 
   First Order Feedback of Chosen Zone   0.898 2.783 
Spatial Correlation Effects as Captured by     
   Dissimilarity Parameter 3.742 4.184 3.936 4.193 
Number of observations   51405 51405 
Log-likelihood at convergence  -2229.594 -2201.645 

135



7.6.1 Comparison of Goodness-of-Fit 

The log-likelihood value at convergence for the MNL-1 model with 26 

parameters is -2862.4, while the corresponding value for the MNL feedback model 

(MNL-2) with 27 parameters is -2250.9 (Table 12). The log-likelihood for the naïve 

model that assigns equal shares to all the zones is -3823.4. Clearly, the simplest MNL 

model, MNL-1, is better than the naïve model (the likelihood ratio test statistic is of the 

order of 1922.0, which is much larger than the chi-squared statistic with 26 degrees of 

freedom at any reasonable level of significance). Moreover, a likelihood ratio test 

between the MNL models with and without feedback (MNL-1 and MNL-2) indicates 

significant effects of past choices on current choice behavior (the likelihood ratio test 

statistic is of the order of 1223.0, which is greater than the chi-squared statistic with 1 

degree of freedom at any reasonable level of significance). 

The likelihood ratio test between the Mixed Logit model without feedback (MxL-

1) and the corresponding MNL model (MNL-1) indicates statistically significant 

unobserved response heterogeneity across individuals (the likelihood ratio test statistic is 

of the order of 151.0, which is greater than the chi-squared statistic with 6 degrees of 

freedom at any reasonable level of significance). A comparison between the models 

MxL-2 and MxL-1 further indicates the presence of significant feedback effects in 

addition to the unobserved inter-individual heterogeneity (the likelihood ratio test statistic 

is of the order of 1127.0, which is greater than the chi-squared statistic with 2 degrees of 

freedom at any reasonable level of significance). 
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Although a statistical comparison of the log-likelihoods of the Mixed Spatially 

Correlated Logit model (MSCL) and the MxL-2 model seems to indicate significant 

spatial correlation effects over and above the unobserved inter-individual heterogeneity 

and feedback effects, both the spatial correlation models SCL and MSCL are actually 

rejected since the dissimilarity parameters estimated are invalid. This will be further 

discussed in the section on spatial correlation effects (Section 7.6.5). 

7.6.2 Effects of Zonal Attractiveness and Impedance Measures 

As shown in Tables 12 and 13, the responses to the zonal attributes (and 

sensitivities to the zonal impedances) captured by the estimated parameters remain more 

or less the same across the different model types. The responses and sensitivities to the 

various zonal attributes and impedances are discussed below based on the MNL-1 

estimates in Table 12. Any deviations in these results across the model types are also 

discussed. 

7.6.2.1 Composite Size Measure 

 The zonal composite size measure (defined in section 7.5.1) has a positive 

coefficient indicating that larger composite size zones are preferred more than zones of 

smaller composite size. This is to be expected since larger composite size zones contain 

more elemental units of attraction such as shopping malls and recreation centers. 

The parameter on the interaction term of composite size with low-income 

indicates that individuals belonging to low income households show a higher preference 

for larger composite size zones than other individuals. It could be that low-income 

individuals prefer to comparison shop for the best value for money and larger composite 
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size zones provide more opportunities for the purpose. Also, individuals who own season 

tickets for public transport show a higher preference for larger composite size zones than 

others. Since large zones with lots of mixed development are typically better connected 

by public transport than zones with fewer opportunities, this is also an intuitive result. All 

interactions of composite size with other sociodemographic characteristics turned out to 

be statistically insignificant. 

The interaction of the composite size measure with choice occasion-specific 

constraints yielded only one significant term. The parameter on this term indicates that 

larger composite size zones are less preferred when a non-maintenance shopping activity 

is chained with other shopping activities. This is again intuitive as individuals usually 

pick convenient locations that can be combined with other destinations when they chain 

trips. 

The effects of the composite size measure on the utility of a zone and the 

observed sources of heterogeneity in these effects, vary very little across the different 

models. Overall, according to the MNL models, composite size has a positive effect on 

the utility of a zone for all the individuals. The MxL-1 and MxL-2 models, on the other 

hand, suggest that composite size may actually have a negative effect on the utility of a 

zone for 2-10% of the individuals. In other words, depending on the sociodemographic 

characteristics, between 2% and 10% of the individuals may prefer smaller composite 

size zones to larger composite size zones. This will be discussed further in the section on 

unobserved heterogeneity. 
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7.6.2.2 Zonal Non-Size Attributes 

Population density, central district (dummy) and presence of daycare (dummy) 

are the zonal non-size attributes that were significant in the MNL model estimations. 

While the central district and daycare dummies drop in significance when feedback and 

unobserved heterogeneity are incorporated, population density remains statistically 

highly significant across all the model types. The estimated effects of each of these 

variables on the utility of a zone are discussed below. 

A central district zone is preferred more for non-maintenance shopping activity 

participation than non-central zones, as indicated by the parameter in Table 12. Among 

the sociodemographic characteristics, the observed sources of heterogeneity that are 

statistically significant include gender and age. While females seem to prefer central 

zones more than males, older individuals prefer central zones lesser than younger 

individuals. The overall effect of a central zone on the utility is clearly positive according 

to the MNL models. However, there are several choice occasion-specific constraints that 

also influence the utility of a central zone. A central zone is less preferred for non-

maintenance shopping activities undertaken in the morning, which is reasonable since 

most people would prefer to avoid the morning traffic in a central district. A central zone 

is also less preferred when an individual has company in traveling to the non-

maintenance shopping location (as captured by the interaction term ‘Central District x 

No. of Accompanying Adults’). This could be capturing different kinds of constraints and 

group dynamics. For instance, when people shop in groups they might want to 

experiment with new or unfamiliar locations, or they might prefer to shop close to 
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someone’s home in order to make drop-offs convenient. On the other hand, there is an 

almost equal (to group travel) positive effect on the utility of a central zone when the 

shopping activity is chained with other activities. Finally, the longer the duration of the 

proposed non-maintenance shopping activity the higher the utility associated with central 

zones. 

 Zones with daycare are preferred less than other zones, as indicated by the 

parameter in Table 12. Although the reason for this is not easily apparent, this could be 

the result of high correlation between residential zones (with few shopping opportunities) 

and the presence of daycare. What is more intuitive is the fact that married people with 

children less than 16 years of age prefer zones with daycare for non-maintenance 

shopping12 (as seen from the MNL-1 estimation results in Table 12, the presence of 

daycare deducts 0.286 from the utility of a zone for most people, except married 

individuals who have children, in which case the presence of daycare adds 0.688-0.286 = 

0.402, to the utility of a zone). Although the daycare interaction term is observed in all 

the model types, the interaction term drops in statistical significance when feedback and 

unobserved heterogeneity are included in the model. 

High population density zones are preferred less than other zones by most people. 

This is reasonable, since high population density zones are primarily residential and the 

few neighborhood shopping opportunities in such zones are mostly favored only by the 

residents of the zone. 

                                                 
12 Since the data only contains households with children above 6 years of age, the parameter on the 
interaction term indicates that individuals with older children may be more familiar with zones containing 
daycare facilities, perhaps due to past experiences, and are therefore likelier to visit these zones. 
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7.6.2.3 Impedance Measures 

Two impedance measures, distance from home and distance from work/school, 

were introduced in the model specifications and they were both significant in all the 

model estimations. The estimated parameters indicate a strong disutility associated with 

these variables, which is intuitive. Most people prefer to visit locations in the vicinity of 

their homes, schools and work places. Therefore, zones that are farther away from these 

locations are less preferred. 

The ‘distance from home’ variable was interacted with several sociodemographics 

and choice occasion-specific constraints, some of which proved to be significant. 

Females demonstrate a higher dispreference for zones that are farther from home than 

males, as do nationals over non-nationals. Retired individuals also prefer zones closer to 

home than others. The more the number of cars owned by an individual the lower his/her 

dispreference for farther zones, which is intuitive since individuals who own cars are less 

constrained in their ability to travel. On the other hand, individuals with more number of 

season tickets for public transportation demonstrate an equally higher dispreference for 

farther zones. Some of these interactions with sociodemographic characteristics, 

however, become statistically insignificant when other effects such as feedback and 

unobserved heterogeneity are included. 

Choice occasion-specific constraints also significantly influence the dispreference 

associated with distance, and these effects remain significant across all the model types. 

Individuals show a higher dispreference to traveling longer distances for non-

maintenance shopping activities undertaken during the weekend compared to a weekday. 
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This is contrary to our expectations. Perhaps people tend to visit locations closer to their 

work places during the weekdays, which may be a longer distance from their homes. The 

other interaction terms are intuitive, however, and indicate that people exhibit a lower 

dispreference for farther zones when they are accompanied by other people, when they 

chain the shopping activity with other activities and when they plan shopping activities of 

longer durations. Similarly, people exhibit a lower dispreference for zones that are farther 

away if the zones have a larger composite size. In other words, the choice between travel 

distance and availability of shopping opportunities is a trade-off. 

7.6.3 Feedback Effects 

A comparison of the MNL models in Table 12 indicates that the effect of past 

choices on the utility of a zone is highly significant and positive. Therefore, on a specific 

choice occasion, all else being equal, zones visited in the previous choice occasion are 

preferred over other zones. This implies a habit persistence or loyalty choice behavior. It 

is important to include feedback effects in location choice models not only to capture this 

behavior but also to ensure that all the other parameters are correctly estimated. A 

comparison of the two MNL models shows that in the absence of feedback several 

parameters are over-estimated (Heckman, 1981, and Hsiao, 1986, discuss this issue in 

detail). In the absence of feedback, the effects of past choices are spuriously assigned to 

the zonal attributes. For instance, central zones and larger composite size zones are 

assigned a higher utility in the absence of feedback, as evidenced by a comparison of the 

relative magnitudes of these parameters in Table 12. Also, variables such as the 

interaction between gender and central district are rendered statistically insignificant 
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when feedback is introduced, indicating that true choice behavior cannot be captured 

unless feedback effects are also included. 

The importance of including feedback is apparent even from the mixed logit 

models presented in Table 13. The effect of feedback is highly significant and positive, in 

the absence of which parameters are often over-estimated (compare the columns of 

parameters under MxL-1 and MxL-2). This is particularly important when estimating 

unobserved inter-individual heterogeneity, as will be discussed in the following section. 

7.6.4 Unobserved Heterogeneity 

The mixed logit models presented in Table 13 distinguish between the effects of 

observed and unobserved sources of heterogeneity, unlike the MNL models that only 

identify the effects of observed sources of heterogeneity in location choice. As shown in 

Table 13, all the standard deviations associated with the responses to zonal attributes are 

highly significant, indicating significant effects of unobserved response heterogeneity. 

Further, it is also evident from the MxL-2 model that there exists significant unobserved 

heterogeneity in the state dependence effect, although the net feedback effects are 

positive for 97.7% of the individuals. It is not surprising, therefore, that the model fit 

statistics indicate the mixed logit models are a better fit for the data than the 

corresponding MNL models (see Section 7.6.1). 

Consider the composite size measure in the mixed logit model without feedback 

(MxL-1).  For individuals from medium and high income households who do not own 

any season tickets, the estimated mean and standard deviation of the composite size 

measure, on a choice occasion when the non-maintenance shopping activity is not part of 
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a trip chain, are 0.346 and 0.297. Or, in other words, the response of such individuals to 

the composite size measure can be drawn from a normal distribution N(0.346,0.297). 

This implies that 87.7% of these individuals find larger composite size zones more 

attractive than smaller composite size zones and the degree of attractiveness varies across 

individuals. In contrast, the MNL model only captures the average response to composite 

size. According to the MNL-1 model, all individuals find larger composite size zones 

more attractive than smaller composite size zones and the degree of attractiveness is fixed 

at 0.254 per composite size unit. Clearly, the Mixed Logit model captures the mechanism 

of choice behavior more realistically than the MNL model.  

The variances of the unobserved heterogeneity terms provide important 

information regarding the fraction of variation in the utility associated with a zone for 

non-maintenance shopping. For instance, consider the Mixed Logit model in equation 

(24).  The variation in utility for this model is given as 

][][][][][][][ 321 ijtjtijijiitjitjiijt VarLVarZVarZXCVarZCVarZXVarUVar εξαδδδ +++++=  

Eq. 52 

The first three terms are the variances due to covariates (that is, the observed 

sources of inter- and intra-individual heterogeneity), the next two terms are the variances 

due to unobserved sources of inter-individual response heterogeneity and the last term is 

the variance due to unobserved sources of intra-individual heterogeneity. Since the last 

term is not known13, the contribution of each of the other sources of heterogeneity can 

only be computed relatively. 

                                                 
13 The error term is gumbel distributed with location parameter 0 and scale parameter β. The variance of the 
error term is therefore π2β2/6. 
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Computation based on the MxL-1 and MxL-2 models indicates that the variation 

in utility explained by unobserved inter-individual response heterogeneity is about 3.75 

times that explained by the effects of covariates. A model that incorporates unobserved 

inter-individual response heterogeneity is therefore a more accurate model. Further, a 

comparison of the MxL-1 and MxL-2 models shows that it is important to incorporate 

unobserved heterogeneity in a model with state dependence and vice versa, since each 

can manifest itself spuriously as the other (see Heckman, 1981, Keane, 1997, Bhat and 

Castelar, 2002). In addition, ignoring state dependence or unobserved heterogeneity will 

generally lead to a bias in the effect of the other coefficients in the model (Heckman, 

1981, Hsiao, 1986). 

Bi-level Mixed Logit models that incorporate intra-individual response 

heterogeneity in addition to inter-individual response heterogeneity were also estimated 

as a part of this empirical analysis. The bi-level mixed logit models attempt to capture 

unobserved (from the analyst’s viewpoint) sources of heterogeneity in location choice 

both across individuals as well as across different choice occasions of an individual. It is 

intuitive that just as different individuals may react differently to the same situation for 

no observable reason (attitude differences), an individual may also react differently on 

different choice occasions for no observable reason (mood dependent reactions). 

However, unobserved intra-individual response heterogeneity proved to be statistically 

insignificant in all the bi-level models estimated. It is possible that the interactions of the 

zonal attributes with choice-occasion specific constraints capture the intra-individual 

heterogeneity very effectively and therefore the remaining unobserved sources of intra-
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individual heterogeneity have insignificant effects on the choice of location. On the other 

hand, it is likelier that this is a data limitation. A larger sample than the 158 individuals 

used in this application with more choice occasions per individual might be required to 

estimate unobserved intra-individual heterogeneity. 

7.6.5 Spatial Correlation 

The SCL and MSCL models presented in Table 14 are essentially the MNL-2 and 

MxL-2 models with spatial interaction incorporated. Although the SCL and MSCL 

models appear to be a better fit for the data, they are both rejected since the estimated 

dissimilarity parameters are significantly greater than 1. The dissimilarity parameter ρ  in 

the SCL and MSCL models is required to lie between 0 and 1 in order to satisfy the GEV 

conditions. This condition can be traced back to the requirement that the variance of the 

joint alternatives be identical in the GEV model (see Koning and Ridder, 2003, for 

details). A smaller dissimilarity parameter indicates high levels of spatial correlation, 

whereas a dissimilarity parameter of 1 indicates zero spatial correlation. A dissimilarity 

parameter greater than 1, on the other hand, is not consistent with random utility 

maximization and should be rejected. There has been some debate over this issue and it is 

believed by some researchers that the general conditions in determining consistency with 

utility maximization are too stringent (see, for instance, Kling and Herriges, 1996). In this 

empirical study it was decided to proceed with the norm and reject models with 

dissimilarity parameters greater than 1. In effect, the assumption is that a dissimilarity 

parameter greater than 1 indicates the absence of significant spatial correlation. 
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Based on the estimated SCL and MSCL models, therefore, it may be concluded 

that there are no significant spatial correlation effects in the study area (Karlsruhe core 

city). What this means is that there is no correlation between the unobserved errors in the 

utilities associated by individual i with zones that are adjacent. While the absence of 

spatial correlation is rare for spatial data, it is possible under certain conditions. The 

spatial correlation between a pair of zones is dependent on the distance between the 

zones. So if the zones in the study area are large, the distance between adjacent zones 

would be correspondingly larger and the strength of correlation would be low. In other 

words, when the variability in land use is at a scale smaller than the distance between the 

zones, there is no spatial correlation between the zones. It is also reasonable to expect 

low spatial correlation if the zonal boundaries are well-defined, in that they completely 

enclose land-use parcels and the land use changes across zones. In such a case, the zones 

would be distinct from each other in their attractiveness for different purposes (such as 

shopping) and spatial correlation would thus be absent. 

The core city of Karlsruhe is a fairly small region of area approximately 15.6 

sq.km with a mature transportation system and tight land-use control. It is therefore 

conceivable that the zonal configuration creates clear boundaries between different land-

use parcels. It also appears that the goods on offer in the various zones in Karlsruhe are 

rather distinct (based on discussion with Dr. Kay Axhausen). The non-maintenance 

shopping opportunities in Karlsruhe are focused on the CBD, which primarily sells 

fashion and expensive goods, and two minor centers in the east and the west (Durlach and 

Mühlburg, respectively), which sell goods in the middle price range. Under these 
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conditions it is not unreasonable that the model estimations suggest the absence of spatial 

correlation in the study area. 

7.7 Summary and Policy Implications 

The location choice model structure proposed in chapter 4 comprehensively 

incorporates the various factors that contribute toward heterogeneity in the choice of 

location, including observed and unobserved sources of inter- and intra-individual 

heterogeneity, feedback effects and spatial correlation effects. Whether location choice 

models that are estimated based on this model structure capture all these effects, though, 

depends entirely on the zonal configuration of the study area and the quality and quantity 

of the observed choice data. 

The empirical application presented here is based on the proposed model structure 

and uses the non-maintenance shopping activity information from the Mobidrive data, the 

best panel data source available for the purpose. The model estimations indicate the 

absence of spatial correlation effects in the study area as well as the absence of 

unobserved intra-individual heterogeneity. The best model estimated is a Mixed Logit 

model that incorporates observed and unobserved sources of inter-individual 

heterogeneity, and feedback effects (MxL-2). While the inability of the model 

estimations to capture unobserved intra-individual heterogeneity may be a result of the 

small data size (158 individuals and 745 choice occasions), the absence of spatial 

correlation is probably due to the zonal configuration of the study area (as discussed in 

the previous sections). 
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The model estimations in this study are further handicapped by the nature of the 

sample data. There is a substantial imbalance in the observed choice toward one of the 

zones in the CBD (zone 21 chosen on 35% of the choice occasions). Presumably, this 

zone is the primary source of non-maintenance shopping opportunities in the study area, a 

fact that is not sufficiently substantiated by the zonal land-use data. According to the 

zonal land-use data, zone 21 is a central district zone with no daycare facilities and a fair 

number of shopping opportunities, a description that could match several other CBD 

zones each of which is observed to be chosen only on 1%-8% of the choice occasions. 

The only zonal attribute that distinguishes zone 21 from other CBD zones is the number 

of recreational opportunities, specifically, the number of museums14. The model 

estimations are therefore handicapped by the contrast between the large fraction of travel 

to zone 21 and the medium level of attractiveness of the zone with respect to relevant 

zonal attractiveness measures. 

Despite the data limitations and the inability of the models to capture unobserved 

intra-individual heterogeneity and spatial correlation, the models estimated as part of this 

empirical application are fairly accurate and sensitive to different policy scenarios. The 

best non-maintenance location choice models estimated in this application are the MNL 

models, MNL-1 and MNL-2, and the MxL models, MxL-1 and MxL-2. The most 

commonly applied location choice model in practice is the MNL model based on cross-

sectional data with only observed sources of heterogeneity. MNL-1 is a more intelligent 

                                                 
14 The number of recreational opportunities in a zone is computed as the sum of the number of cinemas, 
theaters, event halls, golf clubs, gyms, museums, restaurants, parks and outdoor recreational venues in the 
zone. 
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model since it is based on panel data and therefore incorporates the effects of choice 

occasion-specific constraints among the observed sources of heterogeneity. MNL-2 goes 

a step further and incorporates first order feedback. MxL-2 builds on MNL-2 and 

estimates unobserved inter-individual heterogeneity, and is the best estimated model. A 

comparison of the MNL-1, MNL-2 and MxL-2 models in the base case and under 

different policy scenarios follows. 

The predicted fraction of non-maintenance shopping travel to the central districts 

(or CBD) forms the basis for the comparison of the models. The tests were conducted 

using only the second choice occasion of each individual, with the observed choice from 

the first occasion used as feedback. Each of the MNL-1, MNL-2 and MxL-2 models was 

applied to predict the chosen location for each individual in the base case and policy 

scenarios. A comparison of the observed choices in the sample used for estimation 

against the base case predictions for each model indicates that the model MNL-1 over 

predicts travel to the CBD zones by about 21%. The MNL-2 and MxL-2 models, on the 

other hand, are comparable and over predict travel to the CBD zones only by a little more 

than 15%. However, the MxL-2 model performs better in policy analyses than the MNL-

2 model as indicated by the scenarios analyzed. 

In both the following scenarios, the model predictions in the policy case are 

compared to the model predictions in the base case rather than the observed choice data. 

This ensures that the comparison of the models from a policy analysis perspective is not 

confounded by the differing accuracies of the models in the base case. 
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In the first scenario, the composite size of non-CBD zones is increased by 25%. 

This corresponds to a situation where non-CBD zones grow and there are increased 

shopping and recreational opportunities available in these zones. This potentially 

generates a large draw away from the CBD zones, and the MNL-1 model 

correspondingly predicts a 11% drop in the travel to CBD zones. The MNL-2 model, 

however, takes loyalty and inertial behavior into account and predicts only a 3% drop in 

the travel to CBD zones. The MxL-1 model, not only accounts for loyalty and inertia but 

also for the heterogeneity across individuals in loyalty/inertial behavior, and therefore 

predicts a 7% drop in the travel to CBD zones. Clearly, the MxL-2 model better accounts 

for the various aspects of choice behavior and a poorer model would result in 

significantly different policy analysis results. 

The second policy scenario is one of increased access to public transport. This is 

simulated by incrementing the number of season tickets owned by each individual by 

one.  Effectively, in the second policy case, 100% of the sample owns at least one season 

ticket (the corresponding fraction in the base case is 68%). The model results in Tables 

12 and 13 suggest that the number of season tickets owned by an individual influences 

the individual’s sensitivity to zonal composite size and distance. In the base case, 

individuals who live farther away from the CBD do not always choose a CBD zone since 

they trade-off composite size against distance. In the policy case, all the individuals have 

access to public transport and the trade-off between composite size and distance reduces. 

We would thus expect an increase in travel to the CBD. MNL-1 duly predicts a 2% 

increase in travel to the CBD. MNL-2, on the other hand, takes loyalty and inertial 
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behavior into account and predicts only a 0.7% increase in travel to the CBD. MxL-2 

takes into consideration the heterogeneity in response to composite size and distance and 

predicts that despite the loyalty/inertial factor unobserved heterogeneity effects would 

result in a 4% increase in travel to the CBD. The low percentages observed in this 

analysis are not surprising given the size of the study area. The small size of the study 

area implies that the tradeoff between composite size and distance will not influence as 

large a population as may be expected in a larger study area, where distances are a 

deterrent to a larger fraction of the population. 

Many other policy scenarios, including aging of the population with a 

correspondingly larger retired community, and an increase in auto-ownership, and a 

reduction in trip chaining, were also tested with the estimated models, with similar 

results. The MxL-2 model incorporates accuracy and behavioral realism and represents 

individual choice behavior better than the MNL models, and is clearly better suited for 

policy analyses. 
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CHAPTER 8. CONCLUSION 

In today’s world of exploding travel demand and traffic delays and insufficient 

scope for infrastructural expansions, urban and transportation planners increasingly rely 

on the accuracy and behavioral realism of travel demand models to make informed and 

reliable policy decisions. Accuracy and behavioral realism in the travel demand models 

also helps establish their credibility outside the modeling community. The focus of this 

dissertation is to develop a comprehensive, unified, framework for spatial location choice 

that is both accurate and behaviorally realistic, and can be practically applied by planners 

and policy makers in the estimation of travel demand. The following sections summarize 

this dissertation research (section 8.1), and discuss future work and extensions to the 

research (Section 8.2). 

8.1 Summary 

The development of accurate and behaviorally realistic travel demand models 

requires a good understanding of individual travel behavior. An important step toward the 

better understanding of travel behavior has been the development of the activity-based 

paradigm, which states that travel is a result of the desire to participate in activities at 

spatially scattered locations. Activity based methods are thus more accurate and 

behaviorally realistic than the traditionally applied trip-based methods, and planning 

organizations are beginning to slowly adopt activity-based modeling systems over the 

traditional trip-based four-step planning process. Activity-based modeling systems 

essentially model the activity-travel patterns of individuals, which are characterized by 
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several attributes such as activity purpose, location of activity participation and choice of 

mode. 

Of all the attributes that characterize the activity-travel patterns of individuals, the 

choice of location of activity participation is one that has received relatively inadequate 

attention in the literature. On the other hand, the location of activity participation 

spatially pegs the daily activity-travel patterns of individuals. Accurate predictions of 

activity location are, therefore, key to effective travel demand management and air 

quality control strategies. Moreover, an understanding of the factors that influence the 

choice of location can contribute to more effective land-use and zoning policies. 

The choice of location of activity participation and the factors that influence this 

choice vary with the activity purpose. While the work location for most people is 

generally fixed in the short term, non-work activity participation is typically 

characterized by a high degree of spatial-temporal flexibility and discretion. The first 

objective of this dissertation research was to develop a comprehensive econometric 

model of location choice for non-work activities that incorporates accuracy and 

behavioral realism in capturing different kinds of choice behaviors. 

The development of an accurate and behaviorally realistic model of location 

choice for non-work activity participation necessitates a good understanding of the 

factors influencing the choice process. An extensive survey of the spatial choice 

modeling literature was conducted to achieve this aim. The key issues associated with 

understanding location choice behavior were identified, and a comprehensive list of 

observed and unobserved factors that influence location choice decisions was prepared. 
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Subsequently, a conceptual framework of location choice decision-making for non-work 

activity participation was developed that incorporates all the observed and unobserved 

factors that potentially influence the decision-maker. Finally, the proposed conceptual 

framework was translated into a general econometric model of location choice for non-

work activity participation. The model structure thus developed is comprehensive in its 

incorporation of the different sources of heterogeneity such as spatial cognition, 

preference behavior and spatial interaction. 

The incorporation of behaviorally realistic concepts, such as spatial cognition and 

spatial interaction, in the proposed econometric model of location choice is achieved 

through the relaxation of restrictions that impose inappropriate behavioral assumptions 

regarding the underlying choice process. This relaxation of behavioral restrictions on the 

choice model structure leads to analytically intractable choice probability expressions, 

which necessitate the use of numerical integration techniques such as pseudo-Monte 

Carlo (PMC) and quasi-Monte Carlo (QMC) simulation techniques to evaluate the 

multidimensional integrals in the probability expressions. 

Simulation techniques have evolved over the years, and the use of QMC 

sequences for simulation is slowly beginning to replace PMC methods, as the efficiency 

and faster convergence rates of the low-discrepancy QMC sequences makes them more 

desirable. There have been several studies comparing the performance of different QMC 

sequences in the evaluation of a single multidimensional integral. The use of QMC 

sequences in the simulated maximum likelihood estimation of flexible discrete choice 

models, which entails the estimation of parameters by the approximation of several 
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multidimensional integrals at each iteration of the optimization procedure, is, however, 

relatively recent. The second objective of this dissertation research was to experimentally 

compare the overall performance of the Halton and Faure sequences against each other 

and against the Latin Hypercube Sampling (LHS) sequence in the context of the 

simulated likelihood estimation of a mixed logit choice model. The different scrambled 

versions of QMC sequences were also compared, and the effect of scrambling on the 

accuracy and efficiency of these sequences was examined. In addition, the efficiency of 

the QMC sequences generated with and without scrambling across observations was 

compared. The results of this analysis indicate that the Faure sequence consistently 

outperforms the Halton sequence. The Random Linear and Random Digit scrambled 

Faure sequences, in particular, are amongst the most effective QMC sequences for 

simulated maximum likelihood estimation of the mixed logit model. 

This dissertation, therefore, not only proposes a comprehensive econometric 

model of non-work location choice, but also proposes techniques to improve the 

efficiency of the simulated maximum likelihood estimation procedure. In combination, 

this research makes the estimation of accurate and behaviorally realistic non-work 

location choice models practically feasible, which is demonstrated in the empirical 

application presented here. 

As part of the empirical application, location choice models for non-maintenance 

shopping were estimated using the Mobidrive data, based on the proposed model 

structure and applying the most efficient QMC sequence identified for estimation. 

Although the Mobidrive data is the richest multi-day data source currently available for 
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this purpose, the empirical analysis is limited by the zonal configuration of the study area 

and the quantity of the data. The core city of Karlsruhe is a fairly small region of area 

approximately 15.6 sq.km, with a mature public transportation system and tight land-use 

control. It is therefore conceivable that the zonal configuration creates clear boundaries 

between different land-use parcels. Moreover, even the rich Mobidrive data only provides 

a sample of 158 individuals with 745 non-maintenance shopping occasions in all. 

Consequently, the estimated location choice models predict the absence of spatial 

correlation and are unable to capture the effects of unobserved intra-individual 

heterogeneity. Despite these limitations, the best estimated model in this empirical 

application is superior to commonly applied MNL models of location choice since it is 

based on repeated choice observations (panel data) and incorporates feedback as well as 

unobserved inter-individual heterogeneity. A comparison of the estimated models in the 

base case and different policy scenarios further proves the importance of incorporating 

accuracy and behavioral realism in travel demand models. 

In conclusion, the proposed model structure is comprehensive in its incorporation 

of unobserved inter- and intra-individual heterogeneity, spatial correlation and feedback 

effects. In order to exploit the full potential of the proposed model structure, however, it 

is necessary to use a rich multi-day data source that satisfies the criteria presented in 

section 7.1. The models thus estimated would present an accurate representation of 

individual choice behavior, and provide reliable policy implications. 
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8.2 Extensions and Future Work 

Future work and potential extensions to this dissertation research can be directed 

along two different, and yet related, dimensions. On the one hand, further research can be 

undertaken on the non-work location choice model toward a better understanding of 

travel behavior, and on the other hand there are many more avenues to be explored in 

further improving the efficiency of the simulated maximum likelihood estimation 

(SMLE) procedure. As travel demand models become more behaviorally realistic, the 

burden of estimation becomes a very real problem and a more efficient optimization 

process may be the best solution. A few research ideas along these lines are presented 

here. 

8.1.1 Multi-day Data Collection 

The non-work location choice theory and model structure developed in this 

dissertation is rich and comprehensively incorporates different types of behavior, spatial 

cognition and learning, various sources of heterogeneity and spatial interaction. However, 

in order to exploit this model structure to the fullest extent, a rich multi-day data source 

with a reasonably large sample of individuals is necessary. An examination of the 

available data sources indicates the scarcity of this type of data. Further, all existing 

multi-day data sources are European in origin. Research toward the efficient and 

successful collection of multi-day data would therefore be a significant contribution to 

behavioral research.  
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8.2.2 Simultaneous Variety-Seeking and Location Choice Model 

The variety-seeking ratio proposed in section 7.3 is intuitive in its ability to 

capture the degree of heterogeneity in the choice of activity location. Further, a 

regression of the variety-seeking ratio for non-maintenance shopping against individual 

socio-economic attributes effectively captures the correlation between individual 

characteristics and the degree of heterogeneity in spatial choice (see Table 10). It is, 

therefore, a reasonable assumption that a combined discrete-continuous model of location 

choice and variety-seeking will lead to a better understanding of the underlying choice 

behavior. Such a simultaneous model would assume a correlation between the 

unobserved sources of heterogeneity in the variety-seeking ratio and the choice of 

location of activity participation, which is very intuitive. 

8.2.3 Effects of Trip Chaining 

Discretionary (or non-work) activities are typically chained together, and 

therefore the travel-related decisions for one type of non-work activity can be expected to 

influence the other non-work activity-travel patterns. Although the location choice model 

structure proposed in this dissertation is flexible enough to accommodate the effects of 

trip chaining, trip chaining effects are not examined in detail. This then provides another 

interesting avenue for further research. Specifically, extended empirical applications with 

model specifications geared toward including the effects of trip chaining would be of 

interest. 
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8.2.4 Flexible Destination Configurations 

Transportation analysis zones constitute the choice set in the empirical application 

presented here. In other words, the implicit assumption is that individuals evaluate zones 

comprising several non-maintenance shopping options in selecting a destination for the 

activity participation. The choice of zones in such models has been the subject of debate 

for many years now (see, for example, Guo and Bhat, 2004). Instead of the transportation 

analysis zones, it may be more intuitive to consider clusters of shopping opportunities 

that simulate the choice alternatives faced by the individuals more realistically. Such an 

empirical analysis would still be based on the comprehensive model structure developed 

in this research, since the proposed model structure is not limited by the configuration of 

the choice alternatives. 

8.2.5 Extended Comparison of QMC Sequences 

The comparison of Quasi-Monte Carlo sequences and scrambling methods 

presented in this dissertation could be extended further to include the Sobol and 

Niederreiter sequences, and the optimal scrambling of Halton sequences proposed by 

Mascagni and Chi (2004). Both the Sobol and Niederreiter sequences have been 

demonstrated to perform better than the Halton and Faure sequences in the estimation of 

a single multidimensional integral. It would, therefore, be interesting to examine their 

performance in the simulated maximum likelihood estimation of a mixed logit model. 

However, both the Sobol and Niederreiter sequences are somewhat limited from a 

practical perspective since they must be generated specific to each application context. 

Since the Halton and Faure sequences are not limited from this perspective, it is useful to 
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examine other scrambling methods for both these sequences in the hope of further 

efficiency gains. It would also be of interest to examine the effects of other uniform-to-

normal transformation techniques, such as Moro’s method or Ramberg and Schmeiser 

approximation. 

8.2.6 Joint Comparison of Optimization Techniques & QMC Sequences 

Another approach to improving the efficiency of the simulated maximum 

likelihood estimation (SMLE) procedure is to examine different optimization algorithms 

for maximizing the simulated maximum likelihood function. One such algorithm 

proposed in the literature is a trust region-based method that dynamically adapts the 

number of draws for the computation of the simulated maximum likelihood function on 

the basis of statistical estimators of the simulation error and simulation bias (Bastin et al., 

2006). A research area of further interest is the comparison of different optimization 

techniques in combination with different QMC sequences on the efficiency of the SMLE 

procedure.  
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