High-Occupancy-Toll (HOT) lanes: potential benefits and modeling challenges

Hillel Bar-Gera¹, Lauren M. Gardner², Stephen D. Boyles³, Kelly Tang²

- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel.
- 2. School of Civil and Environmental Engineering, University of New South Wales, Australia.
- Civil, Architectural and Environmental Engineering Department, University of Texas at Austin, USA.

Outline

• Case study (the "fast lane" to Tel-Aviv)

- Traveler choice models (LOGIT/VOT)
- Toll algorithms
- Basic stochastic model

• Departure time choice

The "fast-lane to Tel-Aviv" package

- Dedicated bus lane
- High occupancy vehicles (HOV)

- Low occupancy vehicles pay toll (HOT)
- Auxiliary lane
- Carpool parking lot
- Free parking & downtown shuttle

Dates and costs

- Government decision: 1997
- Construction started: January 2009
- Opened to the public: January 7, 2011

- Construction cost: 300-500 MNIS (~150 M\$)
- BOT winning offer: -182 MNIS (~ -50 M\$)
 i.e. operator pays the government

Toll system specifications Public statement: one lane (of three) will carry half of the people and quarter of the vehicles.

Contract:

Speed above 70 km/h Flow above 1600 vehicles per hour ↓

Real-time responsive toll

The location

The corridor

The corridor

The corridor

The corridor: 13 km length

Entrance and exit

Entrance rules

- Public transport, mainly busses, 200/h
- HOV 4 (or 3) persons or more, 100/h
- Responsive toll: 7-75 shekels (~2-20\$)
- E-toll (zero delay) for registered users

Manual HOV inspection and cash toll booths

Access control at wide cross sections

Typical cross section with rigid barrier

"Soft" access control at the bottleneck

Pictures taken from the west bridge

The parking lot

The parking lot

The downtown shuttle

The downtown shuttle

The downtown shuttle

The parking lot

In the first months, on a typical day **by 12:00AM** there were about **900 vehicles** in the parking lot

Before

After (Thursday, June 16, 2011)

Research Motivations

- The use of high-occupancy-toll (HOT) lanes increases continuously.
- A key challenge in HOT operation is how to set the tolls.
- Variability in travel demand creates additional complexity.
- A successful tolling scheme, whether fixed or timevarying, must be robust to changes in travel demand.

Case Study Facility

- Freeway with two lane groups: general purpose (GP) lanes, and a managed lane.
- Managed lane scenarios: GP (Base), HOV or HOT.
- Bottlenecks exist at the downstream end (deterministic point queue model).

Case Study Inputs

	Average	7:00-	8:00-	9:00-
	Occ.	8:00	9:00	10:00
LOV	1.2	6300	5100	3900
HOV	4	600	600	600
Transit	40	300	300	300
Total		7200	6000	4800

HOT capacity: 1800 vphpl; GP capacity: 2100 vphpl; Length: 10 km; Free flow speed: 100 km/h. Modeling Travelers' Lane Choice LOGIT (conventional):

• Assumes choice probability is dictated by an i.i.d. random additive cost component per route, due to imperfect information for example.

Value Of Time – VOT (proposed):

- Assumes primary variation in lane choice is due to VOT distribution (e.g. Burr).
- The proportion of travelers choosing the HOT lane is exactly the proportion of travelers whose VOT exceeds the current ratio of cost to time difference.

VOT-Based Distribution

Burr Distribution: Used to model household income distribution in a population

HOT lane usage and time saving

Revenue

Stochastic Context

- Focus on demand uncertainty.
- Assume non-correlated day-to-day demand uncertainties.
- Implementation:
 - Arriving flow per minute is an independent random variable
 - ➢ Normally distributed.
 - \succ The mean is determined by the time of day.
 - Scenario-specific Coefficient of Variation (CV).
- Assume a deterministic traffic flow model.

Dynamic Tolling Schemes

- 1. Fixed tolls (constant across time)
- 2. Pre-scheduled full-utilization tolls based on the mean demand values (**FU-M**).
- Real-time density-modified full utilization toll (FU-DM). Tolls are set in ignorance of the current demand value, but modified based on the number of vehicles in the HOT lane.
- Perfect information full-utilization tolls (FU-PI), where the demand realization is known to the operator before tolls are set.

Time (min)

Expected Average Person Travel Time

Performance Measures (Stochastic)

Departure Time Choice Model

- Travelers are either "strategic" or "captive"
- Captive drivers can only use the GP lanes. Their demand can be stochastic.
- Strategic drivers can choose between GP lanes and the HOT lane. Their demand is deterministic.
- Strategic drivers are divided into discrete "classes" by VOT and target arrival time.
- 1 min early arrival penalty = 0.5 min travel time
- 1 min late arrival penalty = 1 min travel time
- Two-stage decision process: departure time in view of expected generalized cost, lane by revealed conditions.

Scenario

- Overall demand profile equivalent to case without departure time choice.
- Captive demand C.V is 0.4.
- 10 discrete VOT values, representing percentiles (counted from the top) according to Burr distribution.
- Target arrival time resolution is one minute.
- Full utilization toll schemes: Perfect Information (PI); Mean (factor=1.0); Density Modified (DM, factor=5).
- 300 MSA iterations of departure time choice.

Main Metrics

Metric	All GP	Fixed (\$30)	Mean	DM	PI
AVTT	19.6	21.8	17.9	17.7	17.5
APTT	20.1	13.8	10.5	10.4	10.3
ANTD	24.1	22.7	18.3	18.1	17.9
Revenue ($\times 10^3$)	0	144	143	146	140

AVTT: Average vehicle travel time APTT: Average person travel time ANTD: Average non-transfer disutility Calualtions are based on 200 Samples

Travel Time Profile

Travel Time Variability

Arrival time mismatch by lane and VOT

Conclusions

- HOT lanes are a promising option for Pareto improvements of freeway corridors.
- A fixed toll value (24/7) may achieve a decent portion (2/3 in the examined case studies) from the theoretical potential benefit in terms of average passenger travel time.
- Pre-determined toll profile can handle reasonably well non-trivial uncorrelated demand uncertainties (up to CV=0.3).
- Departure time choice reduces real time toll elasticity.