Introduction to Linear
Regression



Statistical inference

 Deriving predictions on the population
from sample outcomes
» Parameters

— Unknown mathematical characteristics of the
population

o Statistics

— Sample characteristics
— Estimators and test statistics



Developing models

« Specification
— Dependent and independent variables
— Functional form
» Estimation
— Finding unknown parameters of the model

 Application / prediction



Example

« Specification
p(ilk)  (why?)

 Estimation

pli=tik=1)="2 _04

150

200
H(i=11k =2)=——=0.667

140
5(i=11k=3)=—— =0.933
p(i ) 50



Prediction

 Impact of changes in the independent

variables
— Assume model parameters are stable

Income
Low Medium High Total
k=1 k=2 k=3
Population 10% 45% 45% 100%
Yes 0.4x10 0.667x45 | 0.933x45 76%
i=1 =4% =30% =42%




The Estimation Problem

» Our a priori knowledge about the travel
demand process is limited

» There are parameters in the models
whose values we do not know

* The simple linear regression model

y=Bi+px+e

idhere We assume that the function form is known.

However we do not know the parameters f3;, ..

y = the dependent variable
The goal of model estimation is to make inferences about their value.

B B>~ unknown parameters
x = the independent variable

¢ =the disturbance term



The Estimation Problem (continueq)

* The general model

where

y - a random variable

X - a vector of known variables that influence the distribution of y

Y ~f(x, 6

f - the distribution of y

0- a vector of parameters, at least some of which are unknown apriori

Using a sample of observation from the process being modeled, drawn in
some known way from the whole population, a function of the observations is

constructed to estimate the unknown parameters. Such a function is called an
estimator



Estimators

« Sample statistics to indicate on population
parameters

mple
Samp Y.Y,,...Y,
Average 1
Y=—D Y =4
yat =
Variance



Model estimation

Unknown population parameter values
Y=f(X,0)+¢

Use sample of observations to infer about
unknown parameters

Estimator
— Function of observations

Estimate

— Realized value of the estimator for a given
sample



Estimation

Estimator: Statistic whose calculated value is used
to estimate a population parameter, 6

A

Estimate: A particular realization of an estimator, 6

Types of Estimators:

- point estimate: single number that can be regarded as the
most plausible value of 0

- interval estimate: a range of numbers, called a confidence
interval indicating, can be regarded as likely containing the
true value of @
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Examples for Estimators

-~ 1 N
-u'a:u' = 9’1(21,22,...,2,,)’: Y Ezn
N,ﬂ‘:'l

_ max(z,)+min(z,)
2

-2
Uy = 92(24,25,...,2,)

iy = g5(2y,2,,...,2,) = median(z,, 2,,...,2,)

~ 1 N
# = z ,z iiiii z = z
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Properties of Good Estimators

* In the Frequentist world view parameters are
fixed, statistics are rv and vary from sample to
sample (i.e., have an associated sampling distribution)

* In theory, there are many potential estimators for a
population parameter

* What are characteristics of good estimators!’
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Sampling distribution
 Statistics are RV’s. Why?

* Distribution depends on sample size
(8

-




Properties of estimators

 Unbiasedness E(é)ze

 Efficiency
— Unbiased
— No other unbiased estimator has smaller variance

Var(HAl) < Var(éz)

* Precise: Sampling distribution of 6 should have a small
standard error

2
— Cramer-Rao lower bound Var(é) > _E((‘a)g%)

« Asymptotic properties
— Asymptotic unbiasedness
— Consistency b

A

lim,, .. 10(]491—@1 <5)=1 550




Biased

Unbiased

Bias Versus Precision
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Asymptomatic Unbiaseness

. E -~ —
ﬁm’ [Ay]=H
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Consistency

« (Consistency

— A large number of consistent
estimators will often be available,
some of which may be very
biased or inefficient

As the sample size increases 6 gets closer to 6

« Asymptotically normal

8y is a consistent estimator for 0 if

lim [Pr(6-q <@y <6+q)|=1

N—eo

where q is small constant

Plimby =6

N—=seco

— Estimators are asymptotically normal if their distribution

(which may be unknown) converge to normal multivariate

one as n get larger and larger
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Estimation methods

» L east squares
« Maximum likelihood
 Method of moments
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Table 1. Example data.

X Y
1.00 1.00
2.00 2.00
3.00 1.30
4.00 3.75
5.00 2.25
Y 57
4—1
3_
2 .
1 - .
0_ | I 1 | 1
1 2 3 El 5
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A Linear Probabilistic Model

* Definition: There exists parameters f3,, 5, and o' such that for
any fixed value of the independent variable x, the dependent
variable is related to x through the model equation

y =Py +Px + ¢

« £1s arv assumed to be N(0, o7)
~ ~True Regression Line

ESI"/ y = /30 + /31-’(

L -
e
™

22



Implications

 The expected value of Y is a linear function of X, but for fixed

X, the variable Y differs from its expected value by a random
amount

» Formally, let x* denote a particular value of the independent
variable x, then our linear probabilistic model says:

EY | x*)= uy,. = mean value of ¥ when x 1s x *

. 2 . ; i
VY| x*)= oy,. = varlance of ¥ when x1s x*
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Graphical Interpretation

y=py + P

» For example, if x = height and y = weight then Wy|x_¢o is the average

weight for all individuals 60 inches tall in the population
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One More Example

Suppose the relationship between the independent variable height
(x) and dependent variable weight (y) is described by a simple

linear regression model with true regression line
y=75+0.5xand 0=3

* Q1: What is the interpretation of f, = 0.5?
The expected change in height associated with a 1-unit increase

in weight

¢ Q2:If x = 20 what is the expected value of Y?
Uy o = 1.5 + 0.5(20) = 17.5

-~ Yix=2

e Q3:If x =20 what is P(Y > 22)?

22-175

): 1-¢(1.5) = 0.067

P(Y>22Ix:20):P(
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Estimating Model Parameters

* Point estimates of ﬁo and f3, are obtained by the principle of least
squares

n

S (Bo:By) = 2[-":' - (o + ﬁl"'i)]z

i=1
@
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Least Squares Procedure

m The Least-squares procedure obtains estimates of the linear
equation coefficients , and p,, in the model

j>i =/Bo +/81x1'

= by minimizing the sum of the squared residuals or errors (e,
SSE=) ¢/ =2 (v,=3)
m This results in a procedure stated as
SSE=3¢2 =3 (3, = (B, + Ax,))’

m Choose B, and B, so that the quantity is minimized.
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Least Square

L=3ly.(a+bx,)]

i=1

En ECe)

L. n

e i§1(—2)[ yi-(a+bx;)]
L »n

b f§1(‘2)"i[y j~(a+bx;)

n n
na+| 3 X; b= 3y
i=1

i=1

n n o 4
2Xjla+| Xxi b= Y Xy

i=1 i=1 i=1

n n L
inn*(,zxf §1y")

i=1 i

— 3 4 2
n[ZX?J‘(ZX"]
i=1 =1

n n
LYi—-bXx;

g = i=1 =1
n
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Z(xi o X)(J"j o I7)
— =1

Z(xj _AY)2
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m Note that the regression line always goes through

the mean X, Y.

m Think of this
regression line as
the expected value
of Y for a given
value of X.

Yield (Bushel/Acre)

—

N s o o O

o O o o o
\I

o

Relation Between Yield and Fertilizer

—

Trend line

0

100 200 300 400 500 600 700 800

Fertilizer (Ib/Acre)
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Residuals Are Useful!

* They allow us to calculate the error sum of squares (SSE):

i=1 i=1

"

* Which in turn allows us to estimate o~:

« As well as an important statistic referred to as the coefficient of
determination:

. SSE oo )2
R ssT=S (v, - 7)
SST El
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Multiple Linear Regression

* Extension of the simple linear regression model to two or
more independent variables

v=B +Bx; + Prx,+...+Px +¢

n n

Expression = Baseline + Age + Tissue + Sex + Error

* Partial Regression Coefficients: 3 = effect on the
dependent variable when increasing the i* independent
variable by 1 unit, holding all other predictors
constant
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Categorical Independent Variables

* Qualitative variables are easily incorporated in regression
framework through dummy variables

* Simple example: sex can be coded as 0/1

* What if my categorical variable contains three levels:

* Solution is to set up a series of dummy variable. In general
for k levels you need k-1 dummy variables

) {1 if AA
= 0 otherwise

_ {1 if AG
e 0 otherwise

X1 X
AA 1 0
AG 0 1
GG 0 O
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Hypothesis Testing: Model Utility Test (or
Omnibus Test)

* The first thing we want to know after fitting a model is whether
any of the independent variables (X's) are significantly related to
the dependent variable (Y):

H, : B =B, =..=f; =0
H, : Atleastone 3, =0
(1-R) n-(k+1)

f

Rejection Region: F_, ..

34



Equivalent ANOVA Formulation of Omnibus Test

* We can also frame this in our now familiar ANOVA framework

- partition total variation into two components: SSE (unexplained
variation) and SSR (variation explained by linear model)

Source of df Sum of Squares MS F
Variation
. . B S MS,
Regression k SSR = E(_\‘[. -y) SR VS,
- .| SSE
Error 2 |SSE=Y(v-3)|
Total -1 [SST=)(y,-¥)

Rejection Region: £, .,
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F Test For Subsets of Independent Variables

* A powerful tool in multiple regression analyses is the ability to
compare two models

* For instance say we want to compare:
Full Model: vy = B, + Bx; + Box, +Bx;+B,x, +¢€

Reduced Model: v = B, + Bx; + Bx, +¢

* Again, another example of ANOVA:

SSEg = error sum of squares for

reduced model with [ predictors f _ (SSER - SSEF)/(/\ - I)

SSE; = error sum of squares for SSE!, /( [” - (k + 1)]

full model with k predictors
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Example of Model Comparison

* We have a quantitative trait and want to test the effects at two
markers, M1 and M2.

Full Model: Trait = Mean + M1 + M2 + (M1*M2) + error
Reduced Model: Trait = Mean + M1 + M2 + error

_(SSE, - SSE;)/(3-2) (SSE - SSE)

/ SSE, /([100 = (3 +1)] SSE ,. 196

Rejection Region: F, | o
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Hypothesis Tests of Individual Regression
Coefficients

» Hypothesis tests for each f3, can be done by simple t-tests:

H, : 8, =0

H, : p,=0

o ﬁ;’ B /3,
se(f3,)

Cl‘lthal Value . ta/Z.n—(k—l)

* Confidence Intervals are equally easy to obtain:

/31' x ra/.'l,n—(k—l) ¢ Se(ﬁi)

38



Hypothesis testing

H, null hypothesis to be tested

H, alternative hypothesis

significance level
Hy:pi=c 1) p-value
Hl I,U +c If Hp is true

Null is rejected
or not

a a
2 2
M M .0 39




One and two sided tests

 Two sided H :u=c
H u#c
* One sided
H,:u=c

H u<c

40



Test procedure

 Define test statistics

* Define critical value to reject null
— Distribution of test statistic
— Significance level
— Probability that “true” test statistics is zero

41



* Critically important to examine data and check assumptions

Checking Assumptions

underlying the regression model

» Outliers

» Normality

» Constant variance

» Independence among residuals

» Standard diagnostic plots include:

’
e
e
S

scatter plots of y versus x. (outliers)

qq plot of residuals (normality)

residuals versus fitted values (independence, constant variance)
residuals versus x. (outliers, constant variance)

42



Assumptions of Linear Regression

m A linear regression model assumes:
Linearity:
= pLY[X) =By + ByX
Constant Variance:
m var{Y|X} = 02
Normality
m Dist. of Y's at any X is normal

Independence
s Given X/'s, the Y,'s are independent
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Examples of Violations

m Non-Linearity

The true relation between the independent and
dependent variables may not be linear.

s For example, consider campaign fundraising and the
probability of winning an election.

P(w)

$50,000 Spending
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Consequences of violation of linearity

m If “linearity” is violated, misleading conclusions
may occur (however, the degree of the problem
depends on the degree of non-linearity)

Linear in parameters vs. linear variables
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Examples of Violations: Constant Variance

m Constant Variance or Homoskedasticity

The Homoskedasticity assumption implies that, on
average, we do not expect to get larger errors in
some cases than in others.

s Of course, due to the luck of the draw, some errors will turn
out to be larger then others.

= But homoskedasticity is violated only when this happens in
a predictable manner.
Example: income and spending on certain goods.

= People with higher incomes have more choices about what
to buy.

s We would expect that there consumption of certain goods
Is more variable than for families with lower incomes.

46



Violation of constant variance

Spending

e=(Y.—(at+bX))

X, Relation between Income
and Spending violates

homoskedasticity

e=(Y,— (a+ bX)))

As Income increases so
" do the errors (vertical
distance from the
predicted line)

income

47



Conseqguences of non-constant variance

m If "constant variance” is violated, LS estimates
are still unbiased but SEs, tests, Confidence
Intervals, and Prediction Intervals are incorrect

w L+

m However,
the degree
depends...
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Violation of Normality

m Non-Normality NIC

Nicotine use is characterized
by a large number of people

Frequency of

not smoking at all and Nicotine use

another large number of 10

people who smoke every

aay. %
S Std. Dev = 252
- Mean=28
E 0 N = S000

00 1.0 20 30 40 50 60

NIC An example of a bimodal distribution
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) Consequence of non-Normality

m If "normality” is violated,
= LS estimates are still unbiased
~ tests and Cls are quite robust

—1 PIs are not
*Prediction intervals

10
1

Of all the

assumptions, thisis = «-
the one that we
need to be least -
worried about

violating. o

Why? o
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Violation of Non-independence

S N e s

Consumption over Time = The independence assumption means
that errors terms of two variables will not

necessarily influence one another.
Technically, the RESIDUALS or error
terms are uncorrelated.
= [he most common violation occurs with
data that are collected over time or time
series analysis.
Example: high tariff rates in one period

are often associated with very high tariff
rates in the next period.

Example: Nominal GNP and
Consumption
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Consequence of non-independence

s If “independence” is violated:
- LS estimates are still unbiased
- everything else can be misleading

R - 1
Plotting T
code is & e I
litter // | \
(5 mice 0 - : Note that mice from '
1 .~ litters 4 and 5 have |
from each o - higher welghty
of 5 litters) _ height
94 1 T ‘
A 0 1 :
U9611 Spring 2005 LOQ Weight 36
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Robustness of least squares

m The “"constant variance” assumption is important.

m Normality is not too important for confidence intervals
and p-values, but is important for prediction intervals.

m Long-tailed distributions and/or outliers can heavily
influence the results.

*Check:
*Scatterplot of Y vs. X
«Scatterplot of residuals vs. fitted values

| 00k for curvature, non-constant variance
and outlier
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