Departure time choice modeling an application to the Paris area

Fabrice Marchal

fmarchal＠inf．ethz．ch

ETHZ－CoLab

Contributors

Team @ University of Cergy-Pontoise

- Prof. André de Palma
- Cédric Fontan
- Omar Mekkaoui
- Kiarash Motamedi
- Oscar Sanchez

Outline

- Definition of the problem
- Vickrey's model
- Simulation issues
- Integration into METROPOLIS
- Extensions
- Example of Paris

Data collection/survey Input data sets Results

Definition of the problem

- Goal: extend dynamic traffic models by adding endogenous time of usage:
- No arbitrary period
- No time-dependent input data (i.e. dynamic O-D matrices)
- Time of usage depends on:
- Sequence of daily activities
- Availability of transport modes
- Schedule of activities
- Assumptions:
- Decision is individual to each single trip (no tours)
- Single constraint (origin or destination)

Departure time choice-Literature

Vickrey, Small, Hendrickson, Plank, Bates, Mahmassani, de
Palma, Arnott, Lindsey, Khattak, ...

Vickrey's model (1969)

- Choice variable: departure time t_{d}
- Congestion: $\tau\left(t_{d}\right)=\frac{Q\left(t_{d}\right)}{\text { capacity }}$
- Arrival time: $t_{a}\left(t_{d}\right)=t_{d}+\tau\left(t_{d}\right)$
- Cost specification:

$$
C\left(t_{d}\right)=\alpha \tau\left(t_{d}\right)+\beta \max \left\{0, t^{*}-t_{a}\left(t_{d}\right)\right\}+\gamma \max \left\{0, t_{a}\left(t_{d}\right)-t^{*}\right\}
$$

- α : monetary value of time
- β, γ : penalties for early/late arrivals
- t^{*} : desired arrival time

Vickrey's model - deterministic case

- (Nash) equilibrium for a single route exists
- Individual cost at equilibrum:

$$
C^{e q}=\frac{N}{s} \frac{\beta \gamma}{\beta+\gamma}
$$

- Independent of the value of time α
- Schedule delay costs accounts for one half of total cost
- Externality = individual cost
- Cost at the social optimum $(r(t)=s)$:

$$
C^{\min }=\frac{N}{2} \frac{N}{s} \frac{\beta \gamma}{\beta+\gamma}
$$

Vickrey - Simulation issues

- Equilibrium not solved for general networks
- Cannot be embedded in a simulation as it is (no clue about the adjusment process)
- \rightarrow random utility models to the rescue!
- $U\left(t_{d}\right)=-C_{\text {vickrey }}\left(t_{d}\right)+\mu \epsilon_{t_{d}}$
- Logit model: $\mathcal{P}\left(t<t_{d} \leq t+\Delta t\right)=\frac{\Delta t \exp \frac{-C(t)}{\mu}}{\int \exp \frac{C(x)}{\mu} d u}$
- Iterative procedure as follows:
- compute travel costs $c\left(t_{d}\right)$
- compute departure rates $r\left(t_{d}\right)$
- compute travel times $\tau\left(t_{d}\right)$
- ... does it converge? -demo-

Simulation summary

- Unstable (reason=linear bottleneck)
- The logit model is not sufficient to stabilize the process for small capacities (i.e. the case where congestion is worth to study)
- Blending different desired arrival times is not sufficient

- Giving users some memory/inertia causes convergence

Two equivalent techniques:
Expected cost: $E C^{k+1}=(1-\lambda) E C^{k}+\lambda C^{k}$
Refreshment rate (10% of users)

METROPOLIS - design philosophy

- Re-use existing static databases
- Small number of extra parameters
- Parameters should have a behavioral interpretation and can be estimated
- Transferable if possible
- Handle large-scale networks
- Straightforward comparison with simple models

Integration into METROPOLIS

- $s \rightarrow$ network
- $N \rightarrow$ O-D matrix
- $t t_{O D}\left(t_{d}\right)=\arg \min _{p \in \text { paths }} t t_{O D}\left(p ; t_{d}\right)$
- $\left\{\alpha, \beta, \gamma, \mu, t^{*}\right\} \rightarrow U s e r$ Types
- as many user types as needed to reproduce the segmentation of the travel demand
- all the parameters can be specified as a distribution in the same segment

Extensions

- Flexible schedules:

$$
C\left(t_{d}\right)=\ldots+\beta \max \left\{0,\left(t^{*}-\Delta\right)-t_{a}\left(t_{d}\right)\right\}+\ldots
$$

- Evening (vs morning) peak: constraint at the departure

$$
C\left(t_{d}\right)=\ldots+\gamma \max \left\{0, t^{*}-t_{d}\right\}+\beta \max \left\{0, t_{d}-t^{*}\right\}
$$

Application to the Paris area

－Network and OD matrix for a morning peak hour provided by local agency（IAURIF）using DAVISUM
－Segmentation of the travel demand derived from a dedicated survey called MADDIF
－Commuters
－Going to Paris or the close suburbs
－Going to the far suburbs
－Non－commuters
－Estimation of the dynamic parameter set $\left\{\alpha, \beta, \gamma, \mu, t^{*}\right\}$ for each user type
－Calibration of a single parameter K to scale the overall demand

MADDIF survey

- Focused on primary travel purpose
- Description of travel conditions (constraint, modes, etc.)
- Scenarios proposed with trade-off between congestion and schedule delays
- Evaluation of the risk aversion of users
- About 4,000 successful interviews

MADDIF results

- (Value of time from external sources: $\alpha=13 \$ / h$)

	$\beta[\$ / h]$	$\gamma[\$ / h]$	t^{*}	$\mu[\$]$
Com. (Paris/close)	6.0	7.5	$\mathrm{~N}(08: 30,60)$	2.7
Com. (far suburbs)	8.3	17.4	$\mathrm{~N}(08: 24,50)$	1.7
Other purposes	5.2	10.6	$\mathrm{~N}(08: 54,54)$	2.4
			$\mathrm{~N}(10: 49,53)$	

- Schedule delay costs $=30 \%$ of travel costs

Regional database

Size: 120kmX120km, 500 zones, 18k links

Results - Convergence

Results - Expected travel time

Results - Adjustment process

Early ratio -on-time ratio Late ratio

Results - Departure rates (1)

Results - Departure rates (1)

Conclusions

－Tractable approach to simulate departure time choice in equilibrium models，for large－scale systems
－Low data requirements
－Valid comparison with theory and empirical values
－Future directions：
－Add pre－trip information provision（e．g．radio broadcast）
－Integrate risk aversion $(\sigma(\tau(t)))$
－Link with complete activity models／trip chaining

