The Centre for Transport Studies Imperial College London: Developments in measuring airspace capacity in Europe

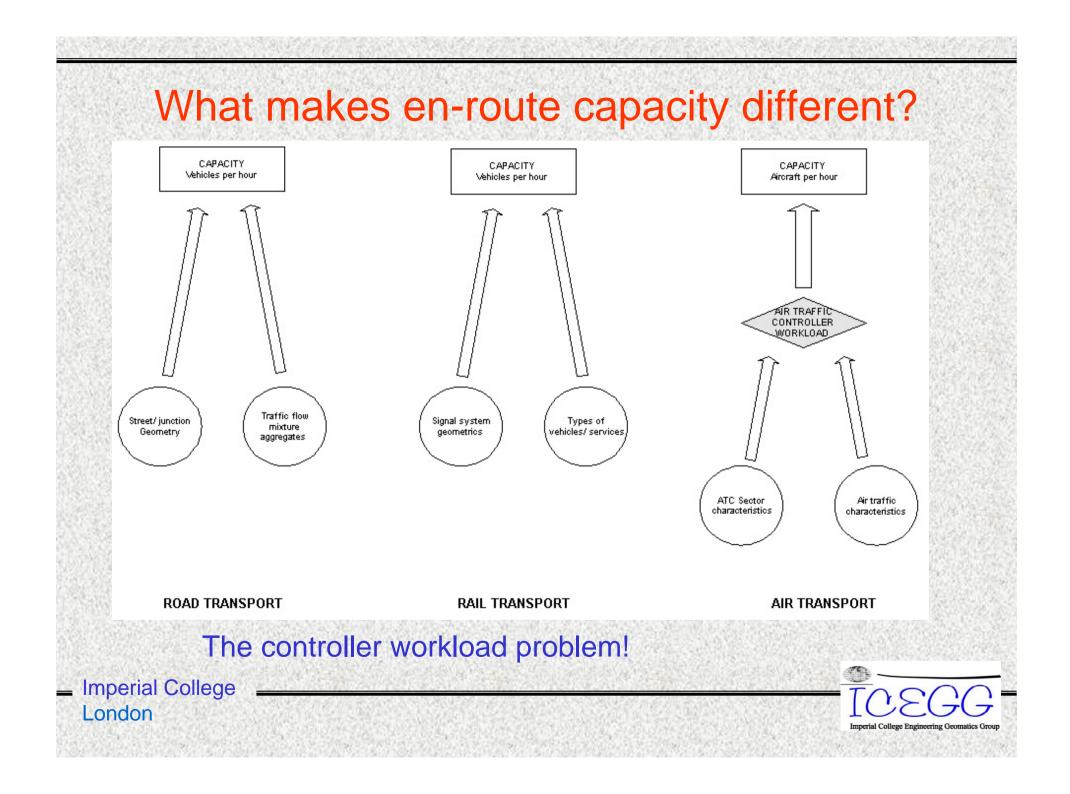
Dr. A. Majumdar a.majumdar@imperial.ac.uk

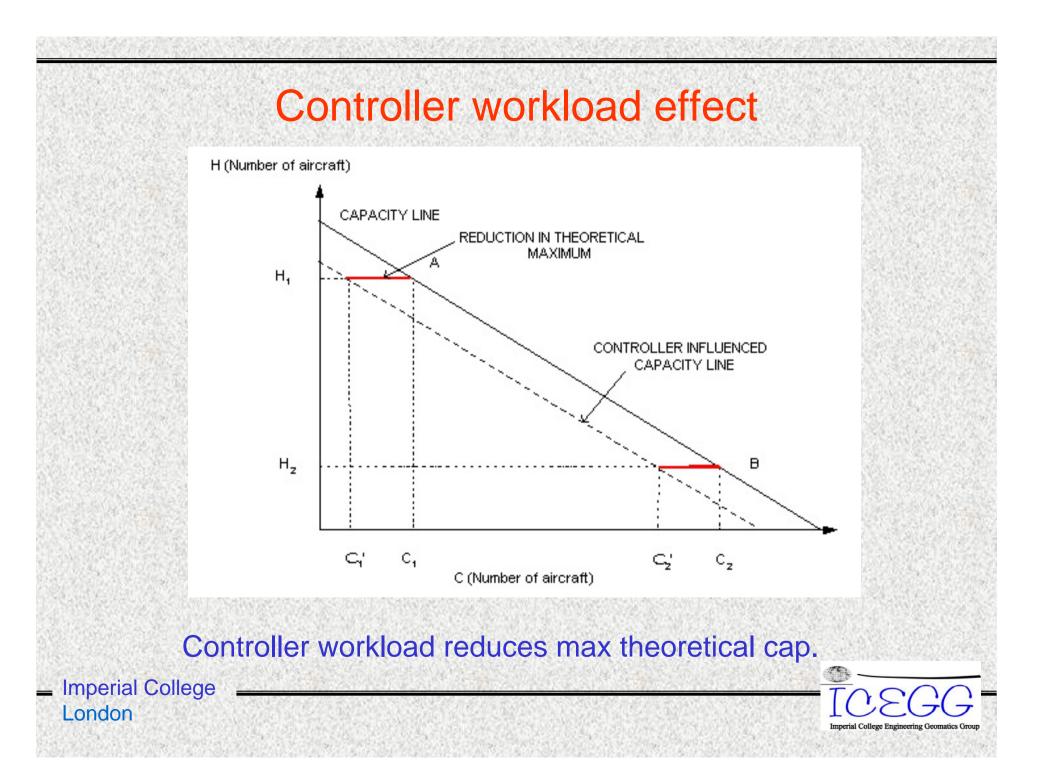
Content

- The en-route capacity problem
 - estimation difficulties
- Three research projects
 - a framework for estimating en-route airspace capacity
 RAMS simulation
 capacity curve
 - multivariate analysis of factors affecting controller workload
 CAPAN/ EAM simulations
 principal components and factor analysis
 - cross-sectional time-series analysis of controller workload
 RAMS simulation
 panel data analysis

ETH Zurich 2003

The En-Route Capacity Estimation Problem




The Airspace Congestion Problem

- Rapid growth in air traffic in Europe & USA:
 - Consequences, e.g.US\$ 5bn.
 - predicted traffic growth;
- Airspace capacity needs to be increased:
 - en-route controller workload
- New CNS/ATM concepts
 - new technologies and procedures, e.g. direct routes

There is a need to:

- Understand the drivers of airspace capacity;
- Develop a consistent method to estimate airspace capacity.

Three questions on controller workload

- What is controller workload?
 Confusing term.
- How is it measured?Many methods.
- What is an acceptable level?

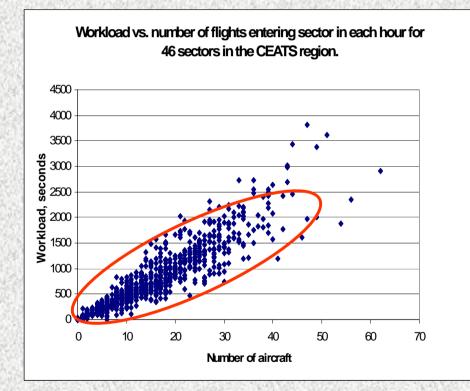
Lyons and Shorthose (1993) : shortcomings of capacity measures

Perceived Workload Estimates	Measured Workload Estimates		
Declared Capacity	MBB Method		
MACE Capacity Estimate	Task Time Methods		
FAA Order 7210.46	"Schmidt" Workload Model		
	Air/Ground Communications Link*		
	The CARE-INTEGRA method		

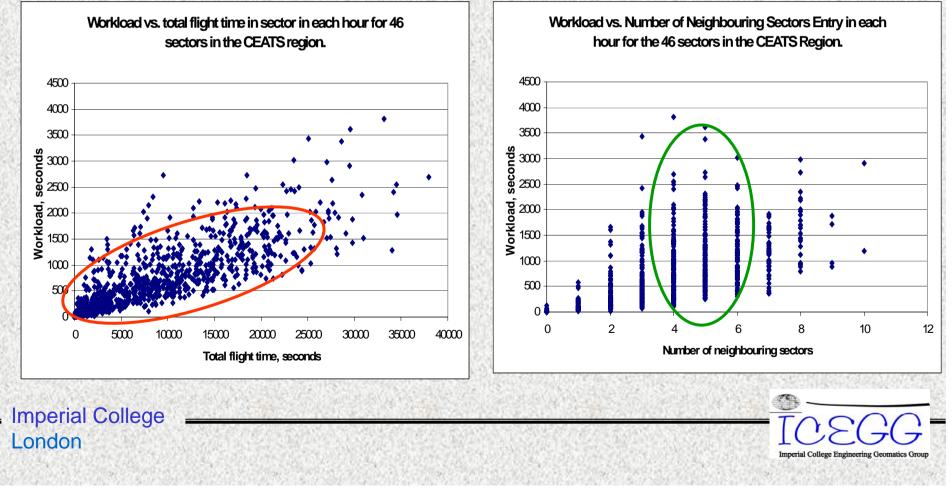
* Workload measured indirectly by Air/ground communications link method.

Current situation

- En-route controller workload:
 - determines en-route sector capacity
- Current capacity estimation:
 - controller workload simulation;
 - workload threshold value.


Sector Capacity:

No. of aircraft entering the sector per hour, respecting the peak hour pattern, when controller workload is 70% in that hour.


The problem - I

Sector entry is the only variable:
 >considerable dispersion.

The problem - II

- What about other variables?
 - >possible relationships;
 - ➤additional effects;
 - >univariate vs. multivariate.

The problem - III

- Airspace capacity defined by sector entry
 Useful BUT
 Considerable variance.
- Need to consider other variables?
 - >Interactions;
 - ≻Quadratic effects.

Three studies on airspace capacity at CTS provide insights into capacity estimation

ETH Zurich 2003

A framework for estimating airspace capacity using RAMS

Plan

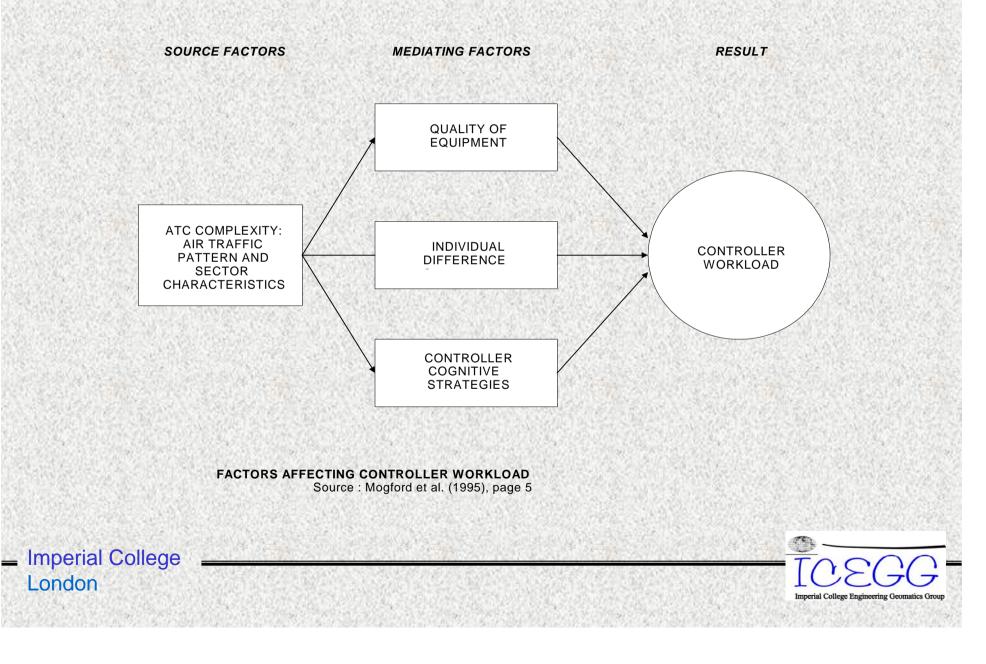
Estimation of en-route capacity of Europe:

- simulation modelling
 - RAMS;
 - methodology;
- workload
 - factors;
 - analysis;
- capacity curves

Airspace Capacity Again

Airspace Capacity depends upon controller workload i) C = tW

- C = Airspace capacity
- t = threshold
- W = controller workload


ii) W = f(X)

X = factors affecting workload

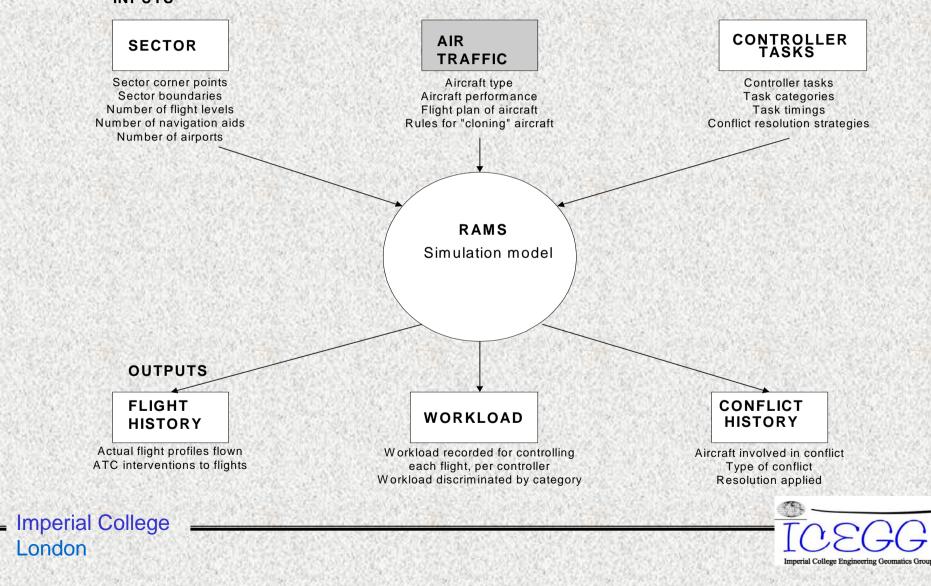
- Analyse factors affecting workload;
- Then determine impact on capacity.

What affects controller workload?

Literature on variables affecting workload

Previous research indicates:

Air Traffic Factors	Sector Factors	
Total number of aircraft	Sector size	
Peak hourly count	Sector shape	
Traffic mix	Boundary location	
Climbing/ descending aircraft	Number of intersection points	
Aircraft speeds	Number of flight levels	
Horizontal separation standards	Number of facilities	
Vertical separation standards	Number of entry and exit points	
Average flight duration in sector	Airway configuration	
Total flight time in sector	Proportion of unidirectional routes	
Average flight direction	Number of surrounding sectors	

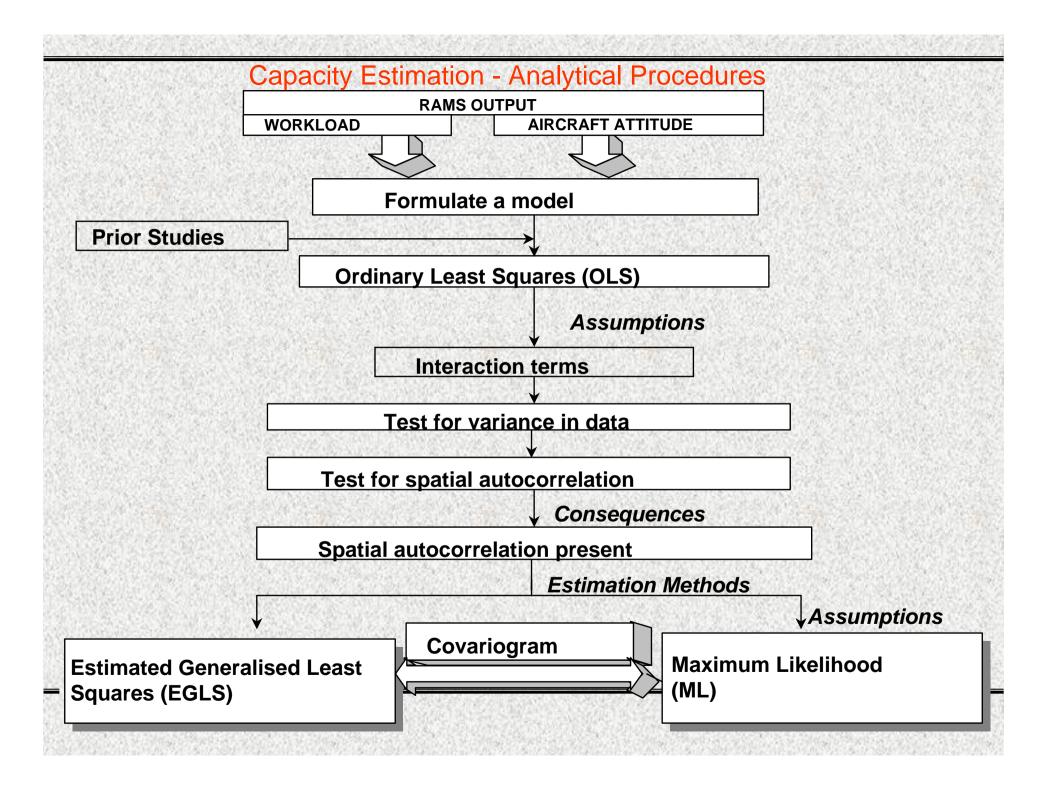

Why RAMS?

- RAMS not overtly cognitive, but :
 - captures observable tasks
 - also mental tasks e.g. resolution
 - workload thresholds controller based
- RAMS:
 - > 25 years use in European airspace planning
- Controller:
 - task input
 - realistic conflict detection and resolution
 - simulation & output verification

En-Route Capacity Estimation I

INPUTS

En-Route Capacity Estimation II


Main features of simulation:

Traffic levels varied systematically
 Current (1996) base traffic;
 Future traffic.

122 ATC sectors
 Continental European airspace

- Bordeaux Task Base

En-Route Capacity Estimation III

RAMS output:

- Workload;
- Flight history.

Functional model formulation:

- OLS;
- Test assumptions;
- Maximum Likelihood.

Spatial correlation:

- Estimation;
- Variogram. Imperial College

En-Route Airspace Capacity IV

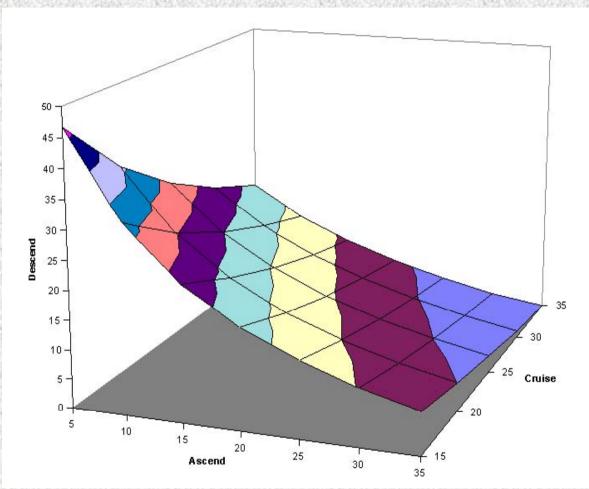
Factors that affect controller workload:

- Cruise;
- Ascend;
- Cruise^{2;}
- Descend x Cruise;
- Ascend x Cruise;
- Descend x Ascend.

Results

Current Demand Pattern - WLS

Variable	Parameter	SE	t
Intercept	148.54	54.73	2.71
Cruise	56.95	6.25	9.11
Ascend	46.54	8.527	5.46
Cruise ²	-0.57	0.069	-8.26
Descend x Cruise	4.27	0.746	5.73
Ascend x Cruise	1.67	0.634	2.62
Descend x Ascend	4.98	0.947	5.26
Adjusted R ²	0.9241		


N.B. Surface uses Bordeaux Task Base

The Capacity Curve

For current ATC/ ATM environment

Imperial College London

ICEGC Imperial College Engineering Geomatics Group

The Capacity Curve - Uses

What does the capacity curve predict?

• Number of descending traffic in declared sectors

Sector	DECLARED TOTAL	Declared	Diff. WLS (+)	Diff. MLE (+)
Maastricht	51	12.8	3.1	4.1
Luxembourg	41	6.2	12.8	14.3
Munich	36	12.6	20.2	21.5
Milan	41	11.1	13.4	15.5
Reims	28	1.1	27.1	29.5

N.B. Cruise and Ascend traffic same as declared

Conclusion

- A framework to estimate airspace capacity:
- Simulations using RAMS:
 - Systematically vary traffic;
- Analytical framework:
 >Assumptions;
 >Spatial analysis.
- Methodology provides:
 Capacity curve;
- Framework applicable to other scenarios

ETH Zurich 2003

A multivariate analysis of factors affecting controller workload using CAPAN/ EAM

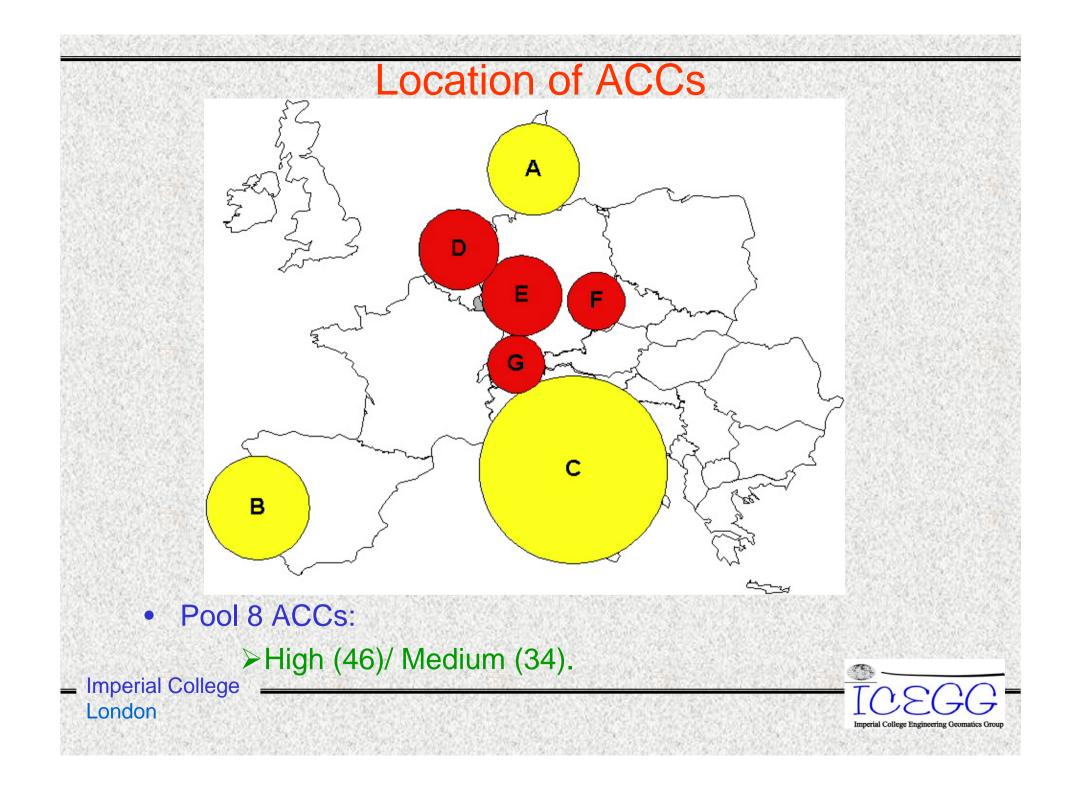
Research: EUROCONTROL DED/4

What factors affect controller workload?

- analyse 8 ACCs peak workload;
- multivariate techniques;
- factors affecting workload

CAPAN Outputs

Main post-simulation outputs (peak hour):


- Controller workload:
 - ≻By controller/ categories.
- Flight data:
 - Flight profiles;
 - Flight times;
 - ≻Entry/exit;
 - >Concentrations.

Q. How to analyse factors that affect controller workload?

- A. Use CAPAN outputs for analysis in:
- Principal components;
- Factor analysis.

Imperial College

Principal Components-I

Explains variance-covariance structure of a set of variables through a few *linear* combinations of these variables.

• *p* variables reduced to *k* principal components

Objectives:

- data reduction
- interpretation

For medium and high density ACCs:

- One dominant PC >70% of variance;
- Nature of cruising aircraft;
- Difference between high and medium.

Principal Components Results

Major features:

- Nature of cruising aircraft
- Differences between high and medium

ACC	Principal Component Number One
HIGH (46)	0.844(Total Cruise Flight Time) + 0.371(Difference in FLs) + 0.310(Bi - direct.conc.)
MEDIUM (34)	0.694(Total Cruise Flight Time) + 0.478(Bi - direct. Conc.) + 0.473(Difference in FLs)

Factor Analysis - I

Multivariate statistical techniques:

- Analysis of interrelationships amongst original variables to explain them in terms of a smaller set of underlying factors;
- Each factor a dependent variable fn. (originally observed variables).

Considerations:

- Rotation of factors to improve interpretation and simplify factor structure:
 - orthogonal VARIMAX;
 - oblique.

Factor Analysis Results

Interpretation of 4 top rotated (VARIMAX) factor scores:

- High density ACCs:
 - cruising aircraft;
 - sector entry/exit measure;
 - climbing aircraft measure;
 - descending aircraft measure.
- Medium density ACCs:
 - trade-off between cruise and climb/descend;
 - climb/descend aircraft measure.
 - trade-offs between types of movement

Multivariate Analysis: Conclusions

Factors that affect controller workload:

- Air traffic and sector features;
- EAM simulations form 8 ACCs;
- Different factors for different ACCs;
- High density vs. Medium density ACCs:
 - similar PCs and factors;
 - cruise aircraft;
 - generic (pooled) or specific?

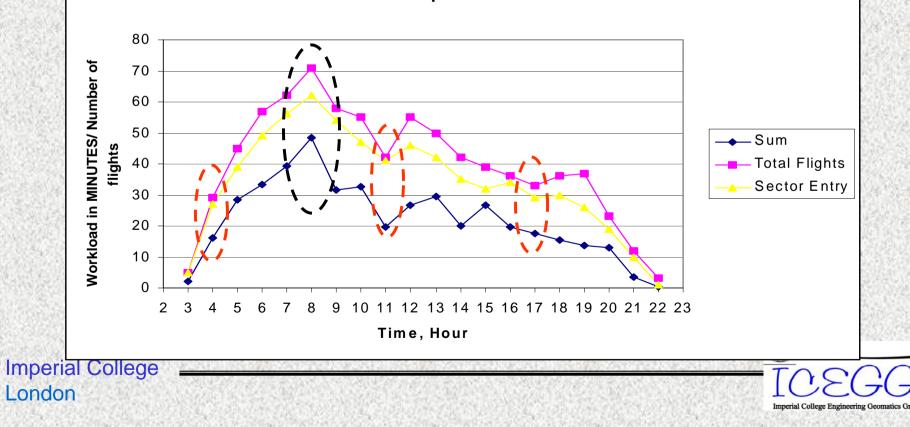
ETH Zurich 2003

Airspace capacity: a cross-sectional time-series analysis using simulated controller workload data

ICEGG Imperial College Engineering Geomatics Group

Content

- Simulation methodology
 - features of CEATS simulation
- Panel Data Analysis
 - method
 - results
- Conclusions and future studies



The problem again

- Why just the peak hour?
 - Traffic patterns changing
 - ➤"Peak spreading"

Workload, total number fo flights and sector entries in each hour for sector C_7 of the CEATS Region during the simulation period

Other variables affecting workload

Previous research indicates:

Air Traffic Factors	Sector Factors		
Total number of aircraft	Sector size		
Peak hourly count	Sector shape		
Traffic mix	Boundary location		
Climbing/ descending aircraft	Number of intersection points		
Aircraft speeds	Number of flight levels		
Horizontal separation standards	Number of facilities		
Vertical separation standards	Number of entry and exit points		
Average flight duration in sector	Airway configuration		
Total flight time in sector	Proportion of unidirectional routes		
Average flight direction	Number of surrounding sectors		

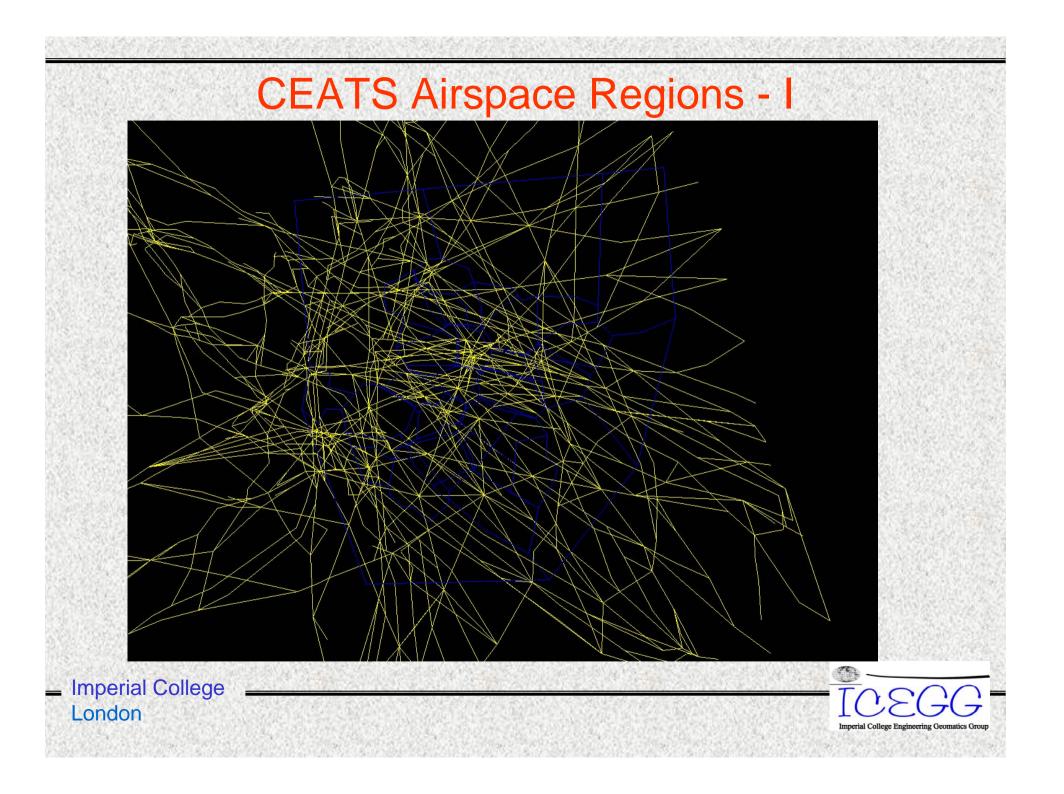
Q. What are the affect of variables on workload in sectors throughout the day?

Use RAMS simulation – based methodology

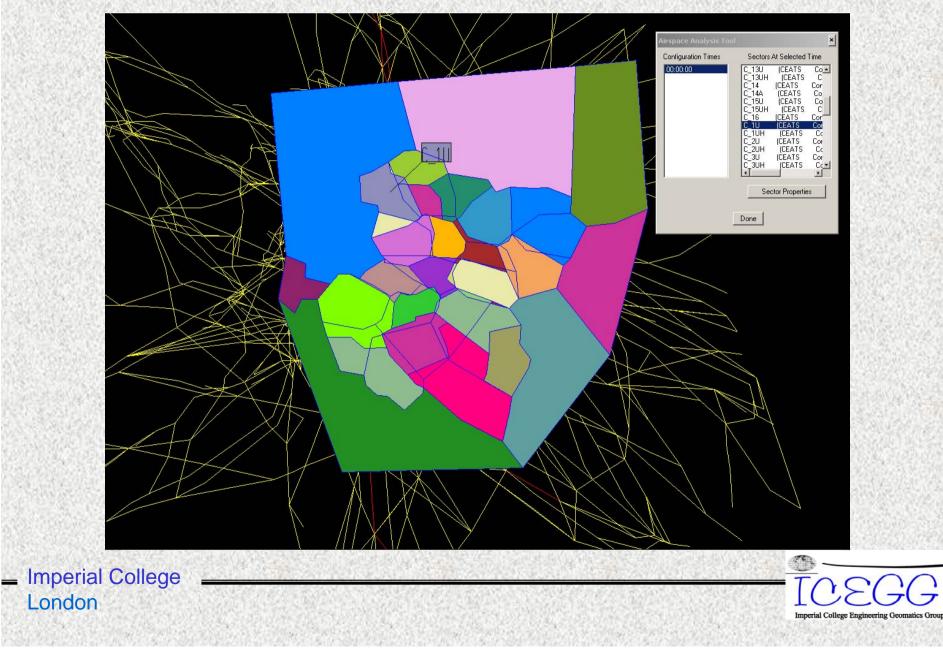
Imperial College London

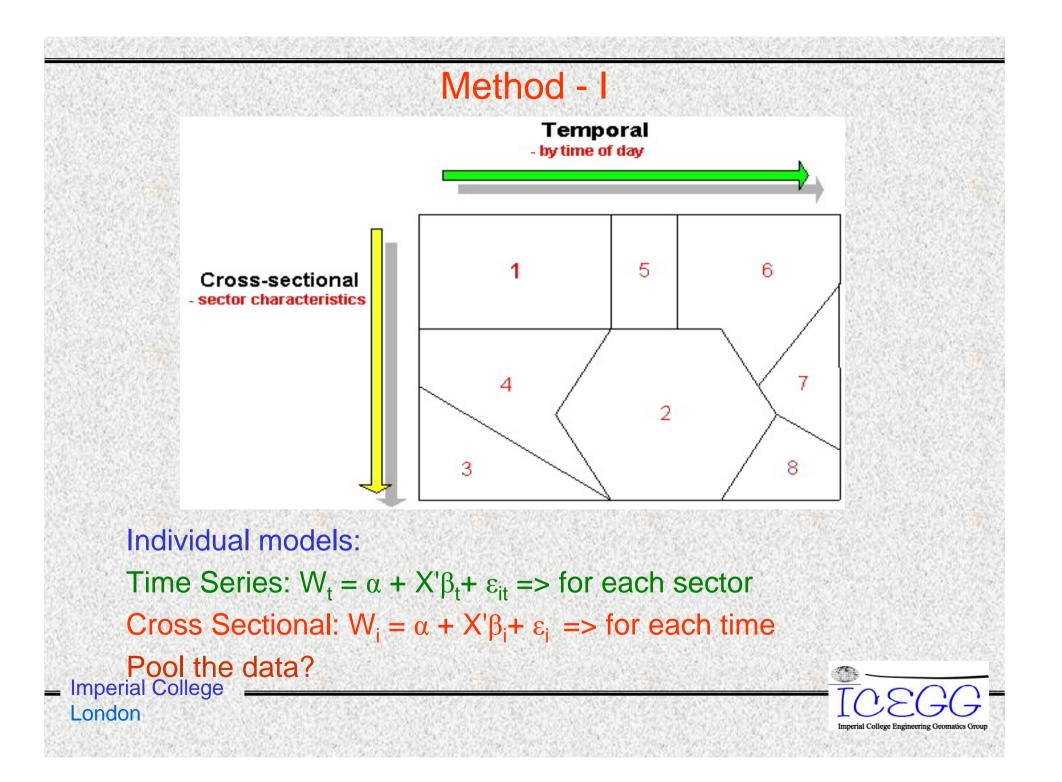
RAMS Simulation: Inputs I

- Airspace region
 - CEATS airspace;
 - 13 ACCs;
 - 46 contiguous sectors.
- Traffic Sample:
 - 5400 flights in 19 hours;
 - Standard Route Structure.
- Conflict definition:
 - less than 2000ft vertical;
 - less than 10NM horizontal;



RAMS Simulation: Inputs II


- Planning Controller:
 - Planning Controller rules;
 - Window =>15 mins before/after sector entry/exit;
 - dynamic detection and resolution (DD&R).
- Tactical Controller:
 - Tactical Controller rules (DD&R);
 - 20 NM before/after sector entry/exit;
 - 2000 ft. below/above sector floor/ceiling;
- Sector Clipping:
 - 60 seconds in sector.
- Tasks from CEATS simulation studies (EEC).


Imperial College London

CEATS Airspace Regions - II

Method - II

Fixed Effects Time-Series Cross-Sectional Model (sector level) $w_{it} = \alpha_i + x'_{it}\beta + \varepsilon_{it}$ $w_{it} =$ workload in sector i at time t α_i = effects of var. peculiar sector i, constant over time X'_{it} = variables in sector i at time t β = coefficients ε_{it} assumed: i i.i.d. over individuals *i* (the sectors) and time;

 \succ mean zero and variance $\sigma_{\!\epsilon}^{\ 2}$

Estimators from T-S C-S model are more accurate:

Greater efficiency cf. c-s or t-s;

 \geq Note estimated α_i

Model specification - test residuals:

Temporal correlation;

Imperial College London

Why Panel Data?

Baltagi (1995):

- > Control for individual heterogeneity.
- More informative data, more variability, less collinearity among the variables, more degrees of freedom and more efficiency
- Study the dynamics of adjustment
- Identify and measure effects not detectable in pure crosssections or pure time-series data.
- Construct and test more complicated behavioural models

Gathered on micro units, such as individuals, or in the case of capacity analysis, ATC sectors.

Imperial College

Data

From RAMS Output:

- 46 Sectors;
- 20 Hours.
- Q. What factors affect controller workload during the day?
- Test variables against workload:
 Aircraft and airspace geometry.
- Total Workload = (Planning+ Tactical)/ hour.
- All 20 hours/ sector not just peak.
- Relationships to define subset of variables for analysis.

 Imperial College London

Results I

Fixed Effects Time-Series Cross-Sectional Model (sector level)

Hours of data	Hour 2-Hour 22		
	Coefficient	SE	t-statisti
Time	-3.46	1.09	-3.1
Number of aircraft in continuous cruise profile	-0.01	4.53	-0.0
Number of aircraft in cruise-climb profile	37.43	5.07	5.0
Number of aircraft in cruise-descend profile	12.52	5.68	2.2
Number of aircraft in descend-descend profile	-4.35	6.82	-0.6
Number of aircraft in descend-climb profile	17.33	11.54	1.5
Number of aircraft in climb-climb profile	49.37	8.30	5.9
Total flight time	0.012	0.004	3.1
Average flight time	0.053	0.04	1.3
Flight level difference	-1.05	0.21	-5.0
Speed difference	0.32	0.32	3.3
Number of neighbouring sectors flight entry	-12.87	5.71	-2.2
Number of neighbouring sectors flight exit	-13.26	5.45	-2.4
Number of flights entering in cruise	35.12	3.47	10.1
Number of flights entering in climb	12.98	4.19	3.1
Number of flights entering in descend	61.92	4.37	14.1
Number of flights exiting in cruise	7.94	2.79	2.8
Number of flights exiting in climb	0.11	7.15	0.0
Number of flights exiting in descend	9.23	4.25	2.1
Ν	919		
R-Squared	0.91		
Rho_ar al College	0.58		

London

Results II

Major findings (workload in seconds, not %age):

- Flight profiles significance:
 - Cruise-descend => +37 secs
 - Cruise-climb => +12.5 secs
 - Climb-climb => +49 secs
- 1 sec of total flight time => +0.012 secs workload;
- Average flight time NOT significant;
- Increase of 1 FL => -1 second workload;
- 1 nm/h speed diff => +0.32 secs workload;
- Neighbouring sectors entry/exit:
 - > ~ -12/13 secs workload;
 - Spatial effects?
- Entry and exit attitudes significant:
 > sector specific?;
- Time trend significant:
 - > Need for correction term.

N.B. Results only valid for CEATS tasks, traffic and sector patterns

Imperial College London

Temporal Effects

Autoregressive (AR1) model:

 $\varepsilon_{it} = \rho \varepsilon_{i,t-1} + v_{it}$

ν_{it} i.i.d. (0, σ_v²)
 >|ρ|<1

Test H₀: p=0 for panel data:
 > Bhargava et al. (1982) modified Durbin-Watson

Test residuals E_{it}

Modified D-W indicates serial correlation
 Fit AR(1) model and estimate.

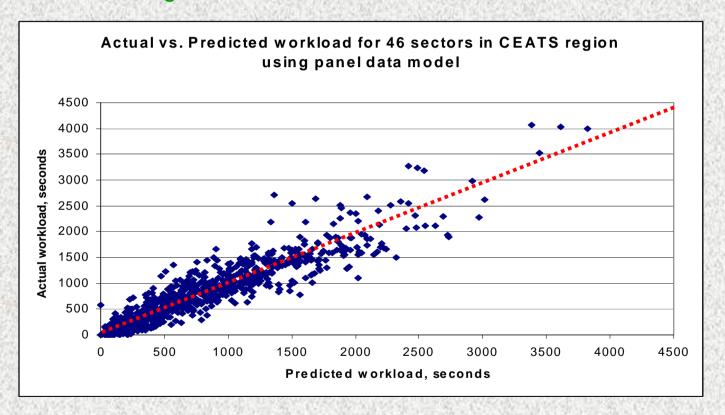
Results III

Fixed Effects Time-Series Cross-Sectional (AR1) model. Dependent variable = Total workload in hour

Hours of data	Hour3-Hour 22		
그는 사람은 영향을 하는 것 수가 같은 것을 하는 것 수가 있었다.	Coefficient	SE	t-statisti
Number of aircraft in continuous cruise profile	2.47	4.54	0.24
Number of aircraft in cruise-climb profile	32.90	5.40	6.09
Number of aircraft in cruise-descend profile	13.02	5.60	2.32
Number of aircraft in descend-descend profile	-5.00	7.29	-0.69
Number of aircraft in descend-climb profile	13.25	11.35	1.17
Number of aircraft in climb-climb profile	36.66	8.66	4.23
Total flight time	0.012	0.004	3.07
Average flight time	0.05	0.041	1.10
Flight level difference	-0.81	0.22	-3.64
Speed difference	0.25	0.09	2.7
Number of neighbouring sectors flight entry	-10.75	5.69	-1.9
Number of neighbouring sectors flight exit	-7.47	5.43	-1.3
Number of flights entering in cruise	37.14	3.27	11.3:
Number of flights entering in climb	24.36	4.91	4.9
Number of flights entering in descend	67.41	4.97	13.5
Number of flights exiting in cruise	3.75	2.79	1.34
Number of flights exiting in climb	0.87	6.89	0.13
Number of flights exiting in descend	3.31	4.20	0.79
Ν	873		
R-Squared	0.882		$\mathbf{DW} = 1.5$
Rho_ar	0.28		B-W = 1.5'

London

Results IV


Major findings:

- Flight profiles still significant:
 - Cruise-descend => +37 secs
 - Cruise-climb => +12.5 secs
 - Climb-climb => +49 secs
- 1 sec of total flight time => +0.012 secs workload;
- Increase of 1 FL => -1 second workload;
- 1 nm/h speed diff => +0.32 secs workload;
- Neighbouring sectors entry:
 - Entry may be significant;
 - Exit NOT significant.
- Entry attitudes significant BUT not exit attitudes:
 - > Similar values to entry attitudes.
- Temporal correlation statistics:
 - Modified D-W and Baltagi-Wu;
 - Indicates temporal autocorrelation.

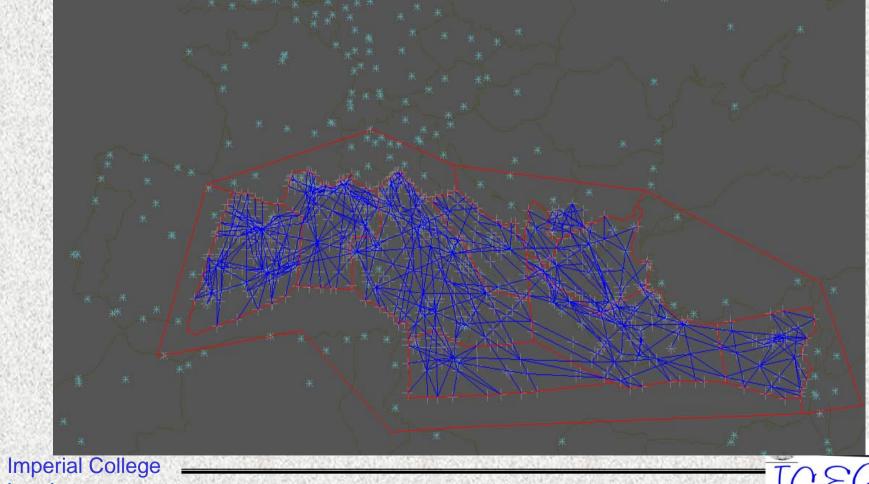
Imperial College London

Results V - Predictions

How good are model predictions? Actual vs. predicted workload for all sectors through day: ▶ 45 deg line

- Investigate major differences
- Imperial College London

Conclusions


- RAMS Simulation methodology:
 - CEATS Region;
 - Better geographical output;
 - Hour-by-hour analysis.
- Hour-by-hour analysis more complicated than peak hour.
- Panel data analysis:
 - More variables than for peak hour;
 - Aircraft and sector variables;
 - Correlations for time and space.
- Separate cross-section and time-series analysis:
 - Check estimator efficiency;

Imperial College London

Future study

- Panel data methodology:
 - MFF simulation;
 - Selection of variables.

London

Overall conclusions

Current methods of airspace have their problems.

CTS analysis of airspace capacity estimation has provided:

- A framework to estimate airspace capacity:
 - Simulation-based;
 - Analysis;
 - Capacity Curve
 - Multivariate analysis of factors affecting controller workload:
 - Factors for subsequent analysis;
- Cross-sectional time-series analysis:
 - What factors affect workload in the sectors each hour?;
 - Simulation-based;
 - Methodology issues.

Imperial College London

•

For more information...

Papers

Airspace Capacity

Arnab Majumdar, Washington Ochieng, John Polak (2002) Estimation of European Airspace Capacity from a Model of Controller Workload, *The Journal of Navigation* 55(2), 381-403

Multivariate Analysis

Majumdar, A. and W.Y. Ochieng (2002), The factors affecting air traffic controller workload: a multivariate analysis based upon simulation modelling of controller workload, *Transportation Research Record*, 1788 58-69.

Websites

General

http://www.cts.cv.imperial.ac.uk

Geomatics

http://www.geomatics.cv.imperial.ac.uk

