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Outline

• General research goals and framework

• Simulation-based optimization (SO): main ideas

• Calibration problems

• Toy network

• Berlin metropolitan network

• Traffic management

• New York City: QBB and MTM

• Lausanne

• Some ongoing projects
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Urban mobility research challenges

• Massive amounts and variety of high-resolution mobility data can now be collected

• Smartphone apps, GPS, taxi data, connected vehicles

1. Understand complex traffic dynamics

• How individuals make, and revise, travel decisions

2. Use this understanding to inform the design and operations of our networks.

Goal: develop methods to enable the use of high-resolution knowledge/data,

at the scale of the individual traveler or vehicle, to optimize urban networks

at the scale of full cities or regions.
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Research framework

Research goals:

1. Develop efficient optimization methods for high-resolution models

2. Develop probabilistic macro. models

3. Develop optimization methods that enable the combined use of multiple traffic

models

Macro

Meso

Micro

Detail

Tractability

Optimization

Carolina Osorio – p.5



Research framework

Research goals:

1. Develop efficient optimization methods for high-resolution models

2. Develop probabilistic macro. models

3. Develop optimization methods that enable the combined use of multiple traffic

models

Macro

Meso

Micro

Detail

Tractability

Optimization

Carolina Osorio – p.6



Research framework

• Focus: analytical, macroscopic, probabilistic, scalable, tractable

• Approach: Traffic flow theory ↔ Queueing network theory

• Stochastic LTM (link transmission model):

Osorio and Flötteröd (2015) Transp. Science

Lu and Osorio (2015) Proc. TRISTAN

Osorio, Flötteröd and Bierlaire (2011) Transp. Res. Part B

• Markovian network models: Osorio and Yamani (forthcoming) Transp. Science

Flötteröd and Osorio (2013) Proc. DTA

Osorio and Wang (2012) Proc. EWGT

• Higher-order Little’s law for congested networks: Chen and Osorio (2014) Proc. EWGT

• Purpose: stand-alone traffic models, auxiliary traffic models
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Research framework

• Develop efficient optimization methods for high-resolution models

• Model calibration problems

• Network design and operation problems: traffic management

Carolina Osorio – p.9



High-resolution traffic models

1. High-resolution: stochastic microscopic traffic simulators

• Probabilistic demand models (departure-time, mode, route, lane-changing)

• Detailed supply models (traffic management strategies)
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High-resolution traffic models

2. Efficient optimization: tight computational budgets, of interest to practitioners

• Computationally costly to evaluate, stochastic outputs, no closed-form available for

optimization

• Current use: what-if analysis

• Relies on prior knowledge

• Complexity of deriving a priori a strategy with good local and network-wide

performance

How can complex stochastic simulation systems be used efficiently for

optimization ?
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Research area: simulation-based optimization

min
x∈Ω

E[F (x, z; p)]

F : performance measure of interest (travel time, fuel consumption)

x: decision vector (green times)

z: endogenous simulation variables (queue-lengths)

p: exogenous simulation parameters (network topology, total demand)

• Problems of interest:

• Objective function: simulation-based

• Constraints: general form (non-convex), analytical, differentiable

• Current methods:

• Black-box approach: a large number of simulated observations are needed to

identify points with improved performance

• Asymptotic properties

• Not practical
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Research area: simulation-based optimization

min
x∈Ω

E[F (x, z; p)]

General objective

• To develop methods that:

• Have good short-term performance: of interest to practitioners

Tight computational budget

• Are suitable for complex problems: high-dimensional, generally constrained,

dynamic

• Do not require a priori solution information

• Challenges: algorithmic, computational, modeling
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Approach: metamodel simulation-based optimization

• Osorio and Bierlaire (2013) Operations Research

Optimization based on a metamodel

Optimization routine

Metamodel

Simulator

Trial point

(new x)

performance estimates

(m(x),∇m(x))

Update m

based on f̂(x) Evaluate new x

min
x∈Ω

E[F (x)] ↔ min
x∈Ω∩Ψk

mk(x)

• The algorithms combine ideas from the fields of probability theory, simulation,

simulation-based optimization, derivative-free optimization, nonlinear optimization,

statistics, traffic control and traffic flow theory.
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Example

min
x

E[F (x)]

x ≥ c

min
x

m = αfA(x, y; q) + φ(x;β)

x ≥ c

h(x, y; q) = 0

• fA: global approximation, problem structure, tractable, prior knowledge,

derivatives

• φ: correction term, asymptotic properties

• Advantage: Achieves an excellent detail-tractability trade-off

• Challenges:

• Derive problem-specific tractable formulations for fA

• Evaluation time of h ≪ Simulation run time
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Metamodel

min
x∈Ω

E[F (x)] ↔ min
x∈Ω∩Ψk

mk(x)

• Metamodel: functional + physical

m(x, y;α, β, q) = αfA(x, y; q) + φ(x;β)

• Combination of:

• fA: the analytical (macro) traffic model

• φ: a quadratic polynomial

x : decision vector

y : endogenous macro. model variables (e.g., link densities, queue lengths)

q : exogenous macro. model parameters (e.g., network topology, total demand)

α, β : metamodel parameters

φ(x;β) = β0 +

d
∑

j=1

βjxj +

d
∑

j=1

βd+jx
2
j
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Metamodel

m(x, y;α, β, q) = αfA(x, y; q) + φ(x;β)

• At each iteration k the parameters β and α of the metamodel are fitted using the

current sample by solving the least squares problem:

min
α,β

nk
∑

i=1

{

wki

(

f̂(xi, zi; p)−m(xi, yi;α, β, q)
)}2

+ (w0.(α− 1))2 +

2d+1
∑

i=1

(w0.βi)
2

xi: ith point in the sample

f̂(xi, zi; p): corresponding simulated observation

wki: weight associated to the ith observation

w0: fixed weight for augmented data
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Calibration Problem

min
θ̃∈Ω

f(θ̃) =
∑

a,k

(

ya,k − E[Fa,k(θ̃; z)]
)2

(1)

• θ̃: vector of cailbration parameters

• ya,k: number of vehicles counted in reality on link a in time step k.

• E[Fa,k(θ̃; z)]: simulation-based expected number of vehicles counted on link a in

time step k.

• z: exogenous simulation parameters (e.g., network topology)
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Calibration Problem

min
θ̃∈Ω

f(θ̃) =
∑

a,k

(

ya,k − E[Fa,k(θ̃; z)]
)2

(2)

Challenging problem:

1. No closed-form expression available for E[F ]: estimation through stochastic

simulation.

2. Each simulation run is computationally costly.

3. E[Fa,k(θ̃; z)] lacks sound mathematical properties (e.g., convexity)

4. Difficult optimization problem: several local minima, identification of physically

plausible solutions is difficult.

5. Large-scale problem: the dimension of θ̃ is in the order of 100,000.
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Calibration Problem

• Extensive research in the field of calibration of (stochastic) traffic simulators.

• For a survey, cf. Balakrishna (2006)

• Most approaches resort to techniques that are:

• black-box optimization techniques

• exploit little problem structure

• are designed to achieve asymptotic properties

• Can we design efficient calibration algorithms?
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Calibration Problem

• Can we design efficient calibration algorithms?

• General idea: Embed information from efficient (e.g., analytical, differentiable)

macroscopic models within the calibration algorithm to to design efficient

calibration algorithms.

• Example

min
x

E[F (x)]

x ≥ c

min
x

m = αfA(x, y; q) + φ(x;β)

x ≥ c

h(x, y; q) = 0
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Metamodel

• Calibration of one route choice parameter

• Single time interval

• Calibrate parameter such as to fit link flows on a subset of links

min
θ̃∈Ω

f(θ̃) =
∑

a

(

ya − E[Fa(θ̃; z)]
)2

(3)

min
θ∈Ω

∑

a

(

ya −mk
a(θ;β)

)2
(4)

• Metamodel for link a: ma(θ;β) = βi,0λa(θ) + βi,1 + βi,2θ

θ̃: calibration parameter

θ: (approximated) calibration parameter

β: metamodel parameter

λa(θ): flow on link a as approximated by an analytical macroscopic traffic model
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Metamodel

• Metamodel for link a: ma(θ;β) = βi,0λa(θ) + βi,1 + βi,2θ

• λa(θ): problem-specific approximation of E[F ].

• Linear term: general-purpose approximation of E[F ].
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Macroscopic traffic model
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Algorithm

min
θ̃∈Ω

f(θ̃) =
∑

a

(

ya − E[Fa(θ̃; z)]
)2

(5)

min
θ∈Ω

∑

a

(

ya −mk
a(θ, y;β)

)2
(6)

s.t. h(θ, y; q) = 0 (7)

Optimization based on a metamodel

Optimization routine

Metamodel

Simulator

Trial point

(new x)

performance estimates

(m(x),∇m(x))

Update m

based on f̂(x) Evaluate new x
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Simple case study

• Calibrate the travel time coefficient of an MNL route-choice model

• “True” flows: simulated

• Demand: 1400 veh/hr

• Comparison of two metamodels: with and without macroscopic traffic model

information:

1. mi(θ;β) = βi,0λa(θ) + βi,1 + βi,2θ

2. φi(θ;β) = βi,1 + βi,2θ
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Simple case study

• True values [1/hr]: {−55,−20,−5}

• Three initial values [1/hr]: {0,−30,−60}

• Bounds: [−60, 0]

• m: with macro. model information (proposed approach)

• φ: without macro. model information

• For each experiment, the algorithm is run 3 times

• Each run allows for the evaluation of 30 θ values.

• For each value:

• Assignment iterations: 50

• Simulation replications: 5

• I.e., each algorithmic run allows for a total of 30*(50+5) = 1,650 simulation runs
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Simple case study
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• True value: −5

• Objective functions: simulated and analytical
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Simple case study
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Simple case study
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Simple case study
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Simple case study
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Berlin metropolitan area

• 24,335 links, 11,345 nodes,

• Morning peak: 8-9am

• Demand: 172,900 vehicles [veh/hr]

• Main challenge: scalability of the approach
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Berlin metropolitan area

• Three initial values [1/hr]: {0,−40,−60}

• Bounds: [−60, 0]

• m: with macro. model information (proposed approach)

• φ: without macro. model information

• For each experiment, the algorithm is run 3 times

• Each run allows for the evaluation of 20 θ values.

• For each value:

• Assignment iterations: 100

• Simulation replications: 10

• I.e., each algorithmic run allows for a total of 20*(100+10) = 2,200 simulation runs
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Berlin metropolitan area
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Berlin metropolitan area
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Compuational savings

When averaging over all 9 experiments:

• Toy network: an average of 83% savings in runtime (35 minutes)

Convergence on average at:

iterations run time [min.]

m 2.4 7.1

φ 14.1 42.2

• Berlin network: an average of 86% savings in runtime (30 hours)

Convergence on average at:

iterations run time [min.]

m 2.4 293.3

φ 17.7 2120.0
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Calibration Conclusions

• Design of computationally efficient calibration algorithms

• Efficiency is achieved through the use of a problem-specific efficient macroscopic

traffic model

• Preliminary results on the toy and the Berlin metropolitan networks are promising

• Ongoing work:

• Supply calibration

• Combination of data-driven and metamodel methods

• Future work:

• Higher-dimensional problems

• Use of a scalable time-dependent macroscopic model

Chong and Osorio (Submitted)

• Fitting higher-order distributional metrics: e.g., higher-order moments of link

flow

Carolina Osorio – p.39



Research framework

• Develop efficient optimization methods for high-resolution models

• Model calibration problems

• Network design and operation problems: traffic management
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Transportation problems of interest

1. High-dimensional problems, large-scale micro. models

Osorio and Chong (2015) Transp. Science

2. Use of instantaneous vehicle performance

Osorio and Nanduri (2015) Transp. Science

Osorio and Nanduri (2015) Transp. Part B

3. Use of higher-order distributional information: reliable and robust problems

Osorio, Chen and Santos (2012) Proc. INSTR

4. Dynamic problems

Chong and Osorio (Submitted)

Osorio, Chen and Santos (2015) Proc. TRB
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Large-scale simulation-based optimization
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Large-scale signal control

• 603 links and 231 intersections

• Travel demand: 12400 trips, 2076 origin-destination pairs

• Signal control: city-wide performance, 17 intersections, 99 endogenous phases

• What can be done with only 150 simulation runs?

• Osorio and Chong (2015) Transp. Science

• Media: MIT News, IEEE Spectrum, Smithsonian Magazine
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Reliable and robust operations

• Rethink how we measure network performance

• Go beyond the use of first-order moment information

• Enhancing network reliability is a critical goal of major transportation agencies

• Travel time variability: important attribute in route choice and mode choice

• Use of instantaneous vehicle performance

Osorio and Nanduri (2015) Transp. Science

Osorio and Nanduri (2015) Transp. Res. Part B

MIT News, March 2015
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New York City: signal control

• New York City Department of Transportation (NYCDOT)

• Morning peak: 8-9am, an average of over 11,000 vehicle trips

• 134 Roads, 41 intersections, 26 controlled.

• Intricate traffic dynamics: highly congested, multi-modal, high pedestrian traffic,

grid topology, short links, complex travel behavior (e.g., high dimensional route

alternatives)

• Critical area: connects Queens to Manhattan through the Queensboro Bridge.

• Spillbacks along access/egress links can have significant large-scale impacts
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Average link travel time

• Average travel time per link:
TT(proposed)
TT(existing)

• The smaller the ratio, the larger the

improvement

• Legend:

green: reduction of more than 20%

dark green: reduction within 0 to 20%

orange: increase within 0 to 20%

red: increase within 0 to 20%
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Average link queue-length

• Average queue-length per link:
QL(proposed)
QL(existing)

• The smaller the ratio, the larger the

improvement

• legend:

green: reduction of more than 20%

dark green: reduction within 0 to 20%

orange: increase within 0 to 20%

red: increase within 0 to 20%
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QBB network results

• Compared to the existing signal plan, the proposed fixed-time plan:

• Reduces average trip travel time by 10%

• Reduces average queue-length by 28%

• Reduces average spillback probability by 23%

• Increases average throughput by 2%

• Traffic-responsive signal control

• Reduces average trip travel time by 7%

• Reduces average queue-length by 27%

• Reduces average spillback probability by 44%

• Increases average throughput by 8%
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QBB: methodological lessons

• Detailed modeling or estimation of between-link interactions is critical for the

control of such complex networks

• Work showed the importance of providing the algorithm with an analytical

description of between-link interactions

• Need of formulating analytical and differentiable macroscopic models that both

quantify these interactions and can be used for large-scale optimization.
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Larger scale control

• Based on the QBB insights: simplify the analytical traffic models, while preserving

the description of between-link interactions

• 924 links

• 2600 lanes

• 444 nodes

• Over 28000 vehicular trips

• Optimization: 96 controlled

intersections

• Simulation budget of 50 runs
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Larger scale control

• NYCDOT signal plan: average link density
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Larger scale control

• NYCDOT signal plan: average link travel time
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Larger scale control
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Towards real-time - San Diego Region

• Real-time large-scale control

• Encompasses three cities:

Escondido, Poway, San

Diego

• 60 minute forecasts based on

state-of-the-art traffic models
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Other ongoing projects

• Algorithms for autonomous and mixed vehicle fleets

• Traffic control: San Diego I-15 corridor; SANDAG, TSS, City of Escondido.

• Vehicle-sharing network design

• How can we design on-demand mobility services such as to complement

existing services, such as transit?

• Ford, ZipCar, City of Boston
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