Evaluation of timetables by estimating passengers' personal disutility using micro-simulation

Taketoshi KUNIMATSU
 Chikara HIRAI

Railway Technical Research Institute, Japan
Norio TOMII
Chiba Institute of Technology, Japan ${ }_{1}$

Outline

- Motivation and Aim
- Proposing method for Timetable Evaluation
- Structure of Train Operation and Passenger Flow Simulator
- Examples of Timetable Evaluation
- Conclusions and Future Works

Outline of Presentation

- Motivation and Aim
- Proposing method for Timetable Evaluation
- Structure of Train Operation and Passenger Flow Simulator
- An Example of Timetable Evaluation

■ Conclusions and Future Works

Features of Railways in Japan

- Too Many Passengers
(More than 1,000,000 passengers in a day in a certain line)
- Too Many Trains
(30 trains per hour in one direction of a double track line)
- Dense rail line network

Requirements for Timetables

To improve passengers' satisfaction

- Provide sufficient transport capacity
\square as many trains as possible during rush hours
- Avoid train and platform congestion
\square sometimes risky!
- Avoid train delay
- Connection with other trains / lines

Appropriate timetable evaluation is essential

Motivation and Aim of our Research

Motivation

- Compare two or more timetables in advance from the viewpoints of passengers
- Express interactions between train operation and passengers' flow
Aim
- Establish an appropriate evaluation method for train timetables

Requirements for Timetable Evaluation Index

Requirements

- Evaluation can be done before the timetable has enforced
- Explicitly reflects transportation services that each passenger experiences
- Reflect each passenger's preference of trains
- Include chronic train delays caused by passengers' flow
- Include dynamic interaction between passengers and trains (eg. snowball effect!)

"Snowball Effect" of Train Congestion and Delay

More Passengers get on the train

The more the train is delayed, the more passengers appear at the station and get on the train.

Extension of dwell time at a station

This effect is caused by dynamic interaction between passengers and trains.
Avoidance of "Snowball effect" is very important

Outline of Presentation

- Motivation and Aim
- Proposing method for Timetable Evaluation
- Structure of Train Operation and Passenger Flow Simulator
- An Example of Timetable Evaluation

■ Conclusions and Future Works

Our Approach for Timetable Evaluation

■ Use "Train Operation and Passenger Flow Simulator" to predict each passenger's behavior
■ Evaluate a timetable using "disutility value" calculated from each passenger's experienced service

Calculation of Disutility Value

- Aggregate some aspects of transportation service (congestion, times of transfer, waiting time, dwell time in train car) that each passenger has experienced
- Passengers' experience oriented evaluation

Disutility Value

Outline of Presentation

■ Motivation and Aim
■ Proposing method for Timetable Evaluation

- Structure of Train Operation and Passenger Flow Simulator
- An Example of Timetable Evaluation

■ Conclusions and Future Works

How Train Operation and Passenger Flow Simulator works?

Simulation Sequence

Based on the amount of passengers getting on or off

Features of our Simulator

- Predict each passenger's behavior in great detail
\Rightarrow Detailed estimation of transportation services (congestion, times of transfer, waiting time, dwell time in train car)
- Preferences of each passengers can be expressed
- As fast as possible
- Hate transferring
- Hate congestion
- "Snowball effect" can be expressed

Demonstration of our Simulator

- Number of Trains

550 trains per day

- Number of Passengers about 650 thousand passengers
- Simulation Time for a whole day about 30 min (using a standard desktop PC)

Screenshots of our Simulator

Outline of Presentation

■ Motivation and Aim
■ Proposing method for Timetable Evaluation

- Structure of Train Operation and Passenger Flow Simulator
- An Example of Timetable Evaluation

■ Conclusions and Future Works

Two Timetables to be Compared

Temporal timetable (Timetable A)

Comparison of the Timetables from OD pairs

:Timetable A is better \bigcirc Almost the same convenience 0 :Timetable B is better

Comparison of the Timetables from other aspects

- Shift of passengers' convenience when the timetable has been changed from A to B
\square Become comvenient \square Almost the same convenience \square Become incomvenient

Outline of Presentation

■ Motivation and Aim
■ Proposing method for Timetable Evaluation

■ Structure of Train Operation and Passenger Flow Simulator

- An Example of Timetable Evaluation
- Conclusions and Future Works

Conclusions

■ Develop the evaluation method of timetables using the micro-simulation system.

- By calculating and aggregating disutility value, appropriate timetable evaluation can be done from the viewpoint of passengers in advance.
- The micro-simulation system also provide some useful information about the timetable, the prediction of train congestion or delay.
- An example of timetable evaluation showed the effectiveness of the method.

Future Works

- Apply for various railway lines and verify the estimated congestion or delay
- Apply for train rescheduling plans under disrupted train operation
\square Develop passenger behavior models under timetable disruption (including retouring)

Thank you very much for your attention.

Evaluation of timetables by estimating passengers' personal disutility using micro-simulation

O Taketoshi KUNIMATSU
Chikara HIRAI
Railway Technical Research Institute, Japan
Norio TOMII
Chiba Institute of Technology, Japan

