Generating timetables with partial periodicity

Gabrio Caimi, ETH Zurich
RailZurich, 12. February 2009
Joint work with M.Laumanns, K.Schüpbach, S.Wörner, M.Fuchsberger

Operated timetable in Switzerland

Standard
 offer

\bigcirc								
Milano	7:15	7:45	8:15	8:30	8:45	9:30	10:30	11:30
Roma	10:45	11:15	11:45	12:29	12:59	13:29	14:29	15:29
Time	3:30	3:30	3:30	3:59	4:14	3:59	3:59	3:59
\bigcirc								
Paris	10:10	12:10	14:10 14:40		15:15	15:50 16:10 17:20		
Bordeaur	13:11	15:24	17:14	17:38	18:48	18:52	19:17	20:23
Time	3:01	3:14	3:04 2:58		3:33	3:02	3:07	3:03
<-3:								
Stuttgart	12:07	14:07	14:40 16:07 16:42 18:07				18:40	-:-
Nürnberg	14:16	16:16	17:25	18:16	19:25	20:16	21:25	-:-
Time	2:09	2:09	2:45	2:09	2:43	2:09	2:45	-:-

Arising questions

- How should we consider the presented timetables?
Periodic or non-periodic?
- Why were these timetables so generated?
- How are they generated?

Remarks on periodicity

- Periodicity is important for the passengers
- It should be part of the offer
- Irregularities are necessary to face changing demand over the day
- Additional services in peak hours
- Different demand in the evening
- Currently:
- Manually, or
- Manual postprocessing of automatic periodic timetabling

Current approaches

- Periodic timetabling
+ Good for regularity
- Needs postprocessing for irregularities
- Optimises only a part of the day
- Non-periodic timetabling
+ Good for irregularities
- Loses offer of periodicity
- Larger size
- New approach: Partial periodic timetabling

Partial periodic timetabling

1. Consider service intention for a whole day, with periodicity and exceptions as part of the offer
2. Formalise it in the partial periodic service intention
3. Generates partial periodic timetables

- Advantages:
- No need of postprocessing
- Allows optimisation all over the day

Partial periodic service intention

- Description of intended transport services for one day
- Set of services:
- Train runs, connections, time dependencies
- Reference periodicity T
- Spatial-temporal graph

Train run

- Train run
- Connection
- Time dependency
- Sequence of stations with:
" Time slot for arrival / departure (at least one)
- Lower/upper bounds for:
- Trip time
- Dwell time (= 0 if train does not stop)
- Periodicity
- First recurrence
- Number of recurrences
- Similar for connections and time dependencies

Example

Solution approach: basic idea

Projection: example

Model for projected problem

- Projected problem is modeled as a Periodic Event Scheduling Problem (PESP)
- Decision variables are event times (departure and arrival) of projected equivalence classes
- Train service constraints are easily modeled in PESP
- Headway constraints are different than classical PESP

Introduction (or not) of headway constraints

- If projection does not need headway
\rightarrow do not introduce headway constraint
- If projection needs headway
\rightarrow check original train service intention

Introduction (or not) of headway constraints

- Headway necessary in the original version?

(a)

No \rightarrow No headway

(a)

Yes \rightarrow headway

(a)

Once yes and once no \rightarrow special situation (*) headway

Equivalence of the problem

- If (situation (*) does not occur) and (all time slots have size < T), then:

Original Problem is equivalent to
Projected Problem

- i.e. Solution Spaces are equivalent

Test scenario

- Central Switzerland: Zug - Lucerne - ArthGoldau
- Reverse-Engineering from 2008 SBB-Schedule
- Trains: intercity, local, cargo
- Compare with fully periodic variant

Computational results

Scenario	T	\# variables	\# integer	\# constraints	CPU time [s]
Partial	60	2206	963	3449	$24 \#$
periodic	120	2936	1278	4594	23
SI	No	12122	5168	19076	130
Fully	60	802	341	1263	6
periodic	120	1344	568	2120	2
	No	10732	4544	16920	70

\# Situation (*) occurred, resulting in infeasible problem
In all other tests situation (*) did not occur

Conclusions

- Formalise partial periodicity, which is most common situation in practice
- Projection method enables the use of established methods for periodic timetabling
- The stronger the periodicity, the larger the size reduction
- Optimises over whole day, no need for postprocessing

Thank You!

Time for questions!

Problem definition

- INPUT
- Train service intention (incl. periodicity properties)
- Railway network
- Dynamic properties of rolling stock
- OUTPUT
- Conflict-free train schedule
- Fulfilling service intention

Connection

- Connects 2 train runs at a common station
- Minimum changing time from station layout
- Maximal changing time from service intention
- Periodicity
- First recurrence
- Number of recurrences

Time dependency

- Between two 2 train runs
- Lower and upper bound for departure time difference
- e.g. to enhance the service during peak hours, or coordinate two different train runs on same (sub-)line

Solution approach: basic idea

1. Project all train runs on the periodic time $[0, \mathrm{~T}]$

- Create equivalence classes of train runs

2. Apply existing solvers for periodic scheduling
3. Roll out the created timetable on the complete day

- Reduces problem size

Train service intention

- List of train services offered to the customers, including:
- Train lines with stop and frequencies
- Interconnection possibilities
- Rolling stock
- TSI can be generated by planners manually or partially automatic (e.g. line planning)

