

Generating timetables with partial periodicity

Gabrio Caimi, ETH Zurich

RailZurich, 12. February 2009

Joint work with M.Laumanns, K.Schüpbach, S.Wörner, M.Fuchsberger

12. February 2009

Operated timetable in Switzerland

						\frown		
Zürich	xx:04	xx:35	16:41	17:41	18:41	00:07		
Luzern	xx:49	xx:25	17:39	18:39	19:39	01:07)	Standard
Time	0:45	0:50	0:58	0:58	0:58	1:00	/	offer
						$\overline{}$		Peak hour Additional
Wil	6:25	6:54	7:25	7:54	xx:25	xx:54	22:54	offer
St. Gallen	6:53	7:17	7:53	8:15	xx:53	xx:15	23:17	
stops	Uzwil, Flawil, Gossau	Uzwil, Gessa u	Uzwil, Flawil, Gossau	Gossau	Uzwil, Flawil, Gossau	Gossau	Uzwil, Goss au	Off-peak hour
Time	0:28	0:23	0:28	0:21	0:28	0:21	0:23	offer

Operated timetable abroad							tandard ffer	
				\frown				
Milano	7:15	7:45	8:15	8:30	8:45	9:30	10:30	11:30
Roma	10:45	11:15	11:45	12:29	12:59	13:29	14:29	15:29
Time	3:30	3:30	3:30	3:59	4:14	3:59	3:59	3:59
				\bigcirc				
Paris	10:10	12:10	14:10	14:40	15:15	15:50	16:10	17:20
Bordeaux	13:11	15:24	17:14	17:38	18:48	18:52	19:17	20:23
Time	3:01	3:14	3:04	2:58	3:33	3:02	3:07	3:03
	\times	\sum		\frown		\frown		
Stuttgart	12:07	14:07	14:40	16:07	16:42	18:07	18:40	-:-
Nürnberg	14:16	16:16	17:25	18:16	19:25	20:16	21:25	-:-
Time	2:09	2:09	2:45	2:09	2:43	2:09	2:45	-:-

H

Arising questions

- How should we consider the presented timetables?
 - Periodic or non-periodic?
- Why were these timetables so generated?
- How are they generated?

Remarks on periodicity

- Periodicity is important for the passengers
 - It should be part of the offer
- Irregularities are necessary to face changing demand over the day
 - Additional services in peak hours
 - Different demand in the evening
- Currently:
 - Manually, or
 - Manual postprocessing of automatic periodic timetabling

i MoH

Current approaches

- Periodic timetabling
 - + Good for regularity
 - Needs postprocessing for irregularities
 - Optimises only a part of the day
- Non-periodic timetabling
 - + Good for irregularities
 - Loses offer of periodicity
 - Larger size

New approach: Partial periodic timetabling

Partial periodic timetabling

- 1. Consider service intention for a whole day, with periodicity and exceptions as part of the offer
- 2. Formalise it in the partial periodic service intention
- 3. Generates partial periodic timetables
- Advantages:
 - No need of postprocessing
 - Allows optimisation all over the day

Partial periodic service intention

- Description of intended transport services for one day
- Set of services:
 - Train runs, connections, time dependencies
- Reference periodicity T
- Spatial-temporal graph

Train run

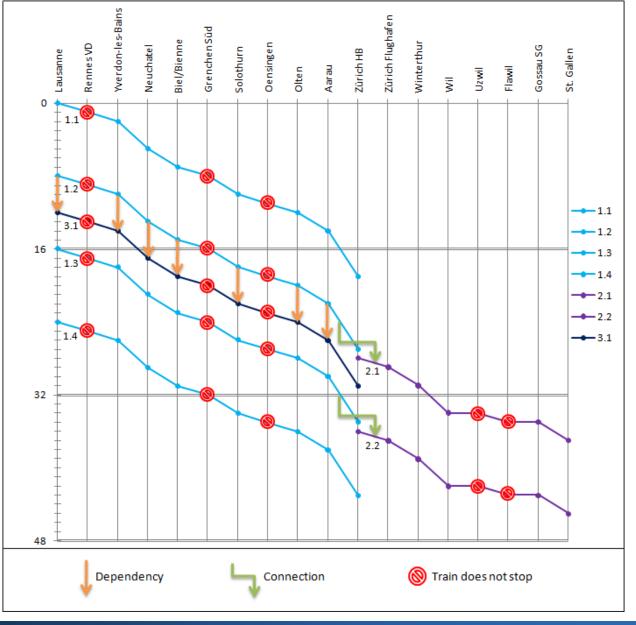
- Sequence of stations with:
 - Time slot for arrival / departure (at least one)
 - Lower/upper bounds for:
 - Trip time
 - Dwell time (= 0 if train does not stop)
 - Periodicity
 - First recurrence
 - Number of recurrences
- Similar for connections and time dependencies

Service Intention

Time dependency

в

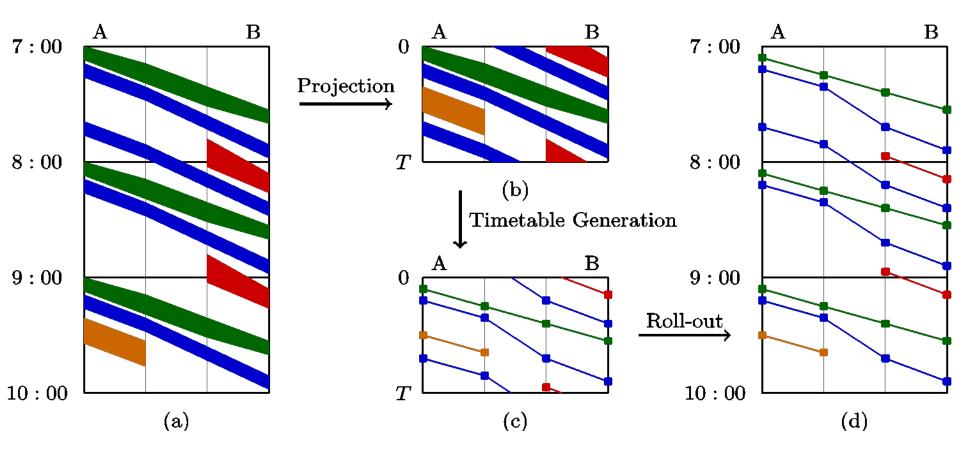
Train run

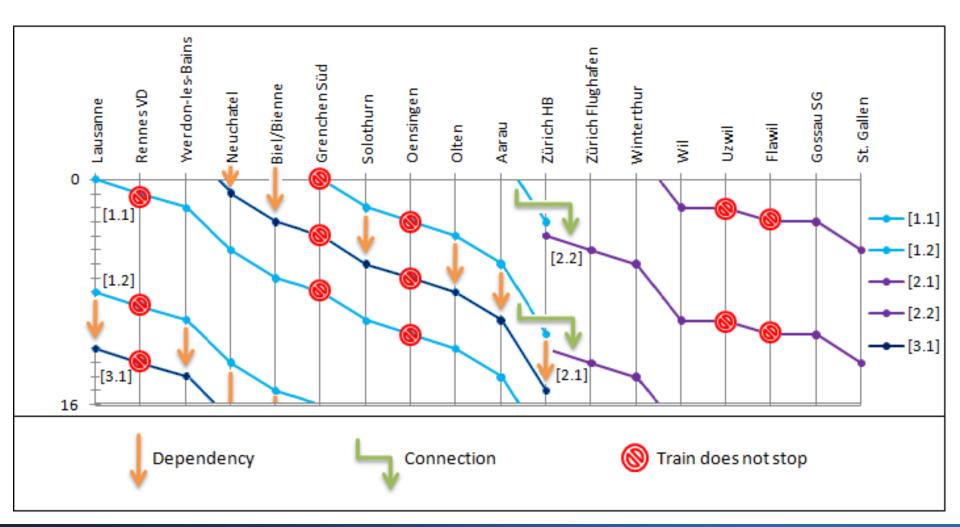

А

Û

T

Connection


Example

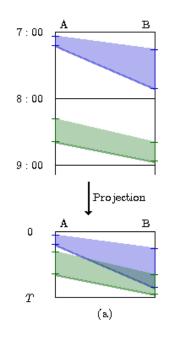

Generating timetables with partial periodicity

H

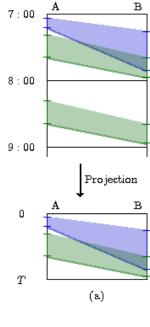
Solution approach: basic idea

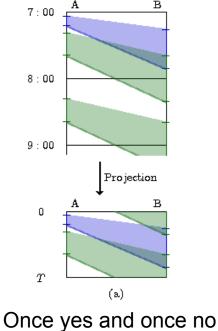
Projection: example

Model for projected problem


- Projected problem is modeled as a Periodic Event Scheduling Problem (PESP)
- Decision variables are event times (departure and arrival) of projected equivalence classes
- Train service constraints are easily modeled in PESP
- Headway constraints are different than classical PESP

Introduction (or not) of headway constraints


- If projection does not need headway
 → do not introduce headway constraint
- If projection needs headway
 - → check original train service intention


Introduction (or not) of headway constraints

Headway necessary in the original version?

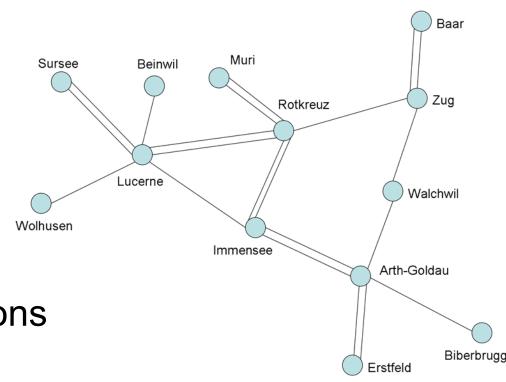
No \rightarrow No headway

 \rightarrow special situation (*)

headway

Generating timetables with partial periodicity

Equivalence of the problem


 If (situation (*) does not occur) and (all time slots have size < T), then:

> Original Problem is equivalent to Projected Problem

i.e. Solution Spaces are equivalent

Test scenario

- Central Switzerland: Zug Lucerne ArthGoldau
- Reverse-Engineering from 2008 SBB-Schedule
- Trains: intercity, local, cargo
- Compare with fully periodic variant without peak hours or late evening exeptions

Computational results

Scenario	Т	# variables	# integer	# constraints	CPU time [s]
Partial periodic SI	60 120 No	2206 2936 12 122	963 1278 5168	3449 4594 19 076	24# 23 130
Fully periodic	60 120 No	802 1344 10 732	341 568 4544	1263 2120 16 920	6 2 70

Situation (*) occurred, resulting in infeasible problem

In all other tests situation (*) did not occur

Conclusions

- Formalise partial periodicity, which is most common situation in practice
- Projection method enables the use of established methods for periodic timetabling
- The stronger the periodicity, the larger the size reduction
- Optimises over whole day, no need for postprocessing

Thank You!

Time for questions!

Problem definition

INPUT

- Train service intention (incl. periodicity properties)
- Railway network
- Dynamic properties of rolling stock

OUTPUT

- Conflict-free train schedule
- Fulfilling service intention

Connection

Service Intention

Train run

Connection

• Time dependency

- Connects 2 train runs at a common station
- Minimum changing time from station layout
- Maximal changing time from service intention
- Periodicity
- First recurrence
- Number of recurrences

Time dependency

Service Intention

- Train run
- Connection

• Time dependency

- Between two 2 train runs
- Lower and upper bound for departure time difference
- e.g. to enhance the service during peak hours, or coordinate two different train runs on same (sub-)line

Solution approach: basic idea

- **1**. **Project** all train runs on the periodic time [0,T]
 - Create equivalence classes of train runs
- 2. Apply existing solvers for periodic scheduling
- 3. Roll out the created timetable on the complete day
- Reduces problem size

Train service intention

- List of train services offered to the customers, including:
 - Train lines with stop and frequencies
 - Interconnection possibilities
 - Rolling stock
- TSI can be generated by planners manually or partially automatic (e.g. line planning)