3rd International Seminar on Railway Operations Modelling and Analysis

RailZurich 2009

10-13 February 2009, Zurich

Railway Timetable Stability Analysis Using Stochastic Max-Plus Linear Systems

Rob M.P. Goverde, Bernd Heidergott, Glenn Merlet

r.m.p.goverde@tudelft.nl

Department Transport and Planning Faculty of Civil Engineering and Geosciences

1

Delft University of Technology

Outline

Railway Timetable Stability Analysis Using Stochastic Max-Plus Linear Systems

- Introduction
- Stochastic max-plus linear systems
- Max-plus ergodic theory
- Stochastic stability analysis
- Example

February 12, 2009

Conclusions

Introduction

Railway timetable stability

- The property that a timetable is able to recover from initial delays and primary delays (due to process time variations) without rescheduling
- How can stability performance be evaluated?

Issues

February 12, 2009

- Primary delays are unavoidable
- Secondary delays depend on primary delays and timetable
- Delay propagation of initial, primary, and secondary delays must be kept within bounds
- Complex problem depending on timetable constraints (regular intervals, synchronization, no early departures), interconnection structure, infrastructure constraints, rolling stock circulations
- Delay recovery by effective time supplements and buffer times

- Event time of the k-th occurrence of event i : x_i(k)
 E.g. arrival time, departure time, passage time at any 'timetable point'
- Process time from event j to k-th occurrence of event i : a_{ij}(k)
 E.g. running time, dwell time, transfer time, minimum headway time, turn-around time, ...
- An event occurs only if each preceding process from a predecessor event *j* has finished:

$$x_i(k) = \max_j (a_{ij}(k) + x_j(k-1)), \quad k \ge 1$$

• Let $a_{ij}(k) = -\infty$ if j is not a predecessor of i, then $x_i(k) = \max_{i=1,...,n} (a_{ij}(k) + x_j(k-1)), \quad k \ge 1$

Intermezzo

Conventional algebra Max-plus algebra Define for real numbers and $-\infty$ $a \oplus b = \max(a, b)$ a+b $a \otimes b = a + b$ $a \times b$ Define for matrices $(A \oplus B)_{ii} = a_{ii} \oplus b_{ii} = \max(a_{ii}, b_{ii})$ $(A+B)_{ii} = a_{ii} + b_{ii}$ $(A \otimes B)_{ij} = \bigoplus_{i=1,\dots,n} (a_{il} \otimes b_{lj}) = \max_{l=1,\dots,n} (a_{il} + b_{lj})$ $(AB)_{ij} = \sum (a_{il} \times b_{lj})$ $(c \otimes A)_{ii} = c \otimes a_{ii} = c + a_{ii}$ $(cA)_{ii} = c \times a_{ii}$

February 12, 2009

• Vector of k-th event times x(k)

- Matrix of process times $A(k) = (a_{ij}(k))$
- Then event times satisfy linear system equations in max-plus algebra:

 $x(k) = A(k) \otimes x(k-1), \quad k \ge 1$

• Note: $x_{i}(k) = (A(k) \otimes x(k-1))_{i}$ $= \bigoplus_{j=1}^{n} (a_{ij}(k) \otimes x_{j}(k-1))$ $= \max_{j=1,\dots,n} (a_{ij}(k) + x_{j}(k-1))$

• A random matrix A corresponds to a directed graph G(A) = (V,E), with $V = \{1,...,n\}$ and $E = \{(j,i) \mid a_{ij} \neq -\infty\}$, with random arc weights

February 12, 2009

February 12, 2009

7

Railway Timetable Stability Analysis Using Stochastic Max-Plus Linear Systems

• Periodic timetable: vector of k-th scheduled event times d(k)

 $d(k) = d_0 \otimes T^{\otimes k} = (d_i(0) + k \cdot T)$

with cycle time T and basic scheduled event times $d_i(0) \in [0,T)$

• The scheduled railway system satisfies

 $x(k) = A(k) \otimes x(k-1) \oplus d(k), \quad x(0) = x_0$

with initial condition x_0 : the initial event times at the start of the day

- The matrices A(k) represent the primary process times which may generate primary delays when exceeding the scheduled process times
- The secondary delays are computed from the system equations when events have to wait for delayed preceding processes

February 12, 2009

Assumptions and properties

- An entry $a_{ij}(k)$ is either nonnegative or $-\infty$ for all k (fixed support)
- The finite entries $a_{ij}(k)$ are integrable nonnegative random variables (possibly dependent within the same period *k*)
- $\{A(k) \mid k \ge 1\}$ is a stationary or i.i.d. sequence of random matrices
- For simplicity: A(k) is irreducible, i.e., G(A(k)) is strongly connected
- For simplicity: A(k) has cyclicity 1
- A (scheduled) stochastic max-plus linear system

 $x(k) = A(k) \otimes x(k-1) \oplus d(k), \quad x(0) = x_0$

is a stochastic event graph (stochastic decision-free Petri net)

February 12, 2009

Max-plus ergodic theory

• What is the behaviour of the event time sequence $\{x(k)\}_{k\geq 0}$, defined by the autonomous system (trains do not wait on timetable)

$$x(k) = A(k) \otimes x(k-1), \quad x(0) = x_0$$

• There exists a fixed cycle time λ , such that for each *i* and any $x_0 \ge 0$,

$$\lim_{k \to \infty} \frac{x_i(k)}{k} = \lim_{k \to \infty} \frac{\mathrm{E}[x_i(k)]}{k} = \lim_{k \to \infty} \mathrm{E}[x_i(k) - x_i(k-1)] = \lambda$$

- So the asymptotic behaviour is independent from the initial condition
- The value λ depends only on the structure and probability distribution of the random matrices A(k) and is called its Lyapunov exponent

February 12, 2009

Stochastic stability analysis

• What is the behaviour of the event time sequence $\{x(k;T)\}_{k\geq 0}$, defined by the scheduled system

$$x(k) = A(k) \otimes x(k-1) \oplus d(k), \quad x(0) = x_0$$

$$d(k) = T \otimes d(k-1), \qquad d(0) = d_0$$

• **Proposal**: A scheduled system is stable if for the primary process time distributions and any initial condition the cycle time equals T,

$$\lim_{k \to \infty} \frac{x_i(k;T)}{k} = T$$

• For each *i* and any $x_0 \ge 0$, the cycle time for the scheduled system is

$$\lim_{k \to \infty} \frac{x_i(k;T)}{k} = \lim_{k \to \infty} \frac{\mathrm{E}[x_i(k;T)]}{k} = \lambda \oplus T$$

• A scheduled railway system is stable iff $\lambda < T$

February 12, 2009

Stochastic stability analysis

• Delay sequence $\{z(k)\}$ is defined by

 $x(k) = A(k) \otimes x(k-1) \oplus d(k), \quad x(0) = x_0$ $d(k) = T \otimes d(k-1), \qquad d(0) = d_0$ z(k) = x(k) - d(k)

• **Proposal**: A timetable is realizable if for zero initial delays, $x_0 = d_{0}$, any delays generated by the primary process time distributions can settle,

$$\liminf_{k\to\infty} z(k;d_0) = 0$$

- Note: the delay sequence z(k) will generally not converge to zero, since there will always be primary delays generating a new sequence of secondary delays
- Liminf implies that delays always settle, although new delays can occur

February 12, 2009

Example

- Periodic timetable: $d_0 = (31, 30, 0, 1, 21, 56, 26, 56)$ ', T = 60
- Primary process times are shifted Gamma distributed, where the shift is the minimum process time indicated in the figure
- The mean and standard deviation are given in percentage of the minimum process times, the Gamma parameters are estimated by matching moments

February 12, 2009

Èxample

• PDF of running time from station 1 to station 2

February 12, 2009

TUDelft

Railway Timetable Stability Analysis Using Stochastic Max-Plus Linear Systems

Example

• Cycle time as a function of mean and standard deviation as percentage of the minimum process times

	Standard deviation σ					
Mean μ	0%	1%	2%	3%	4%	5%
0%	58.0	-	-	-	-	-
1%	58.6	58.6	58.6	58.7	58.9	59.0
2%	59.2	59.2	59.2	59.3	59.5	59.6
3%	59.7	59.7	59.8	59.9	60.0	60.2
4%	60.3	60.3	60.3	60.4	60.6	60.8
5%	60.9	60.9	61.0	61.0	61.2	61.4

• The deterministic system becomes critical when process times are increased by 3.45%, random systems with this mean are unstable

February 12, 2009

Conclusions

- Timetable stability of large scale networks can be tested for arbitrarily distributed process times using stochastic max-plus stability analysis
- A fast algorithm based on perfect simulation has been developed for estimating the Lyapunov exponent of a given stochastic system
 - Primary process times can have arbitrary distributions (with finite mean)
 - Dependencies through cycles in the network are no problem
- Sensitivity analysis of distribution parameters gives insight in stability robustness

