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Railway timetable stability
• The property that a timetable is able to recover from initial delays and 

primary delays (due to process time variations) without rescheduling
• How can stability performance be evaluated?

Issues
• Primary delays are unavoidable
• Secondary delays depend on primary delays and timetable
• Delay propagation of initial, primary, and secondary delays must be 

kept within bounds  
• Complex problem depending on timetable constraints (regular intervals, 

synchronization, no early departures), interconnection structure, 
infrastructure constraints, rolling stock circulations

• Delay recovery by effective time supplements and buffer times
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Introduction



Stochastic max-plus linear systems
• Event time of the k-th occurrence of event i :

E.g. arrival time, departure time, passage time at any ‘timetable point’

• Process time from event j to k-th occurrence of event i :
E.g. running time, dwell time, transfer time, minimum headway time, turn-
around time, ... 

• An event occurs only if each preceding process from a predecessor 
event j has finished:

• Let                    if j is not a predecessor of i, then
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Intermezzo

Max-plus algebra Conventional algebra
• Define for real numbers and 

• Define for matrices
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Stochastic max-plus linear systems
• Vector of k-th event times 
• Matrix of process times 
• Then event times satisfy linear system equations in max-plus algebra:

• Note:

• A random matrix A corresponds to a directed graph G(A) = (V,E), 
with V = {1,...,n} and                                , with random arc weights
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Stochastic max-plus linear systems
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Stochastic max-plus linear system
• Periodic timetable: vector of k-th scheduled event times 

with cycle time T and basic scheduled event times  
• The scheduled railway system satisfies

with initial condition x0: the initial event times at the start of the day

• The matrices A(k) represent the primary process times which may 
generate primary delays when exceeding the scheduled process times

• The secondary delays are computed from the system equations when 
events have to wait for delayed preceding processes
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Stochastic max-plus linear systems

Assumptions and properties
• An entry aij(k) is either nonnegative or -∞ for all k (fixed support)
• The finite entries aij(k) are integrable nonnegative random variables 

(possibly dependent within the same period k)
• is a stationary or i.i.d. sequence of random matrices

• For simplicity: A(k) is irreducible, i.e., G(A(k)) is strongly connected

• For simplicity: A(k) has cyclicity 1

• A (scheduled) stochastic max-plus linear system 

is a stochastic event graph (stochastic decision-free Petri net)
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Max-plus ergodic theory
• What is the behaviour of the event time sequence               , defined 

by the autonomous system (trains do not wait on timetable)

• There exists a fixed cycle time λ, such that for each i and any x0 ≥ 0,

• So the asymptotic behaviour is independent from the initial condition

• The value λ depends only on the structure and probability distribution 
of the random matrices A(k) and is called its Lyapunov exponent
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Stochastic stability analysis
• What is the behaviour of the event time sequence                  , defined 

by the scheduled system

• Proposal: A scheduled system is stable if for the primary process time 
distributions and any initial condition the cycle time equals T, 

• For each i and any x0 ≥ 0, the cycle time for the scheduled system is

• A scheduled railway system is stable iff 
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Stochastic stability analysis
• Delay sequence {z(k)} is defined by 

• Proposal: A timetable is realizable if for zero initial delays, x0 = d0, 
any delays generated by the primary process time distributions can 
settle,

• Note: the delay sequence z(k) will generally not converge to zero, since 
there will always be primary delays generating a new sequence of 
secondary delays

• Liminf implies that delays always settle, although new delays can occur
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Example

• Periodic timetable: 
• Primary process times are shifted Gamma distributed, where the shift is 

the minimum process time indicated in the figure
• The mean and standard deviation are given in percentage of the 

minimum process times, the Gamma parameters are estimated by 
matching moments
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Èxample
• PDF of running time from station 1 to station 2

February 12, 2009 14

Railway Timetable Stability Analysis Using Stochastic Max-Plus Linear Systems



Example
• Cycle time as a function of mean and standard deviation as percentage 

of the minimum process times

• The deterministic system becomes critical when process times are 
increased by 3.45%, random systems with this mean are unstable
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Conclusions
• Timetable stability of large scale networks can be tested for arbitrarily 

distributed process times using stochastic max-plus stability analysis

• A fast algorithm based on perfect simulation has been developed for 
estimating the Lyapunov exponent of a given stochastic system
• Primary process times can have arbitrary distributions (with finite mean)
• Dependencies through cycles in the network are no problem

• Sensitivity analysis of distribution parameters gives insight in stability 
robustness
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