$3^{\text {rd }}$ International Seminar on
 Railway Operations Modelling and Analysis RailZurich 2009

10-13 February 2009, Zurich

Railway Timetable Stability Analysis Using Stochastic Max-Plus Linear Systems

Rob M.P. Goverde, Bernd Heidergott, Glenn Merlet
r.m.p.goverde@tudelft.nl

Delft University of Technology

Outline

Railway Timetable Stability Analysis Using Stochastic Max-Plus Linear Systems

- Introduction
- Stochastic max-plus linear systems
- Max-plus ergodic theory
- Stochastic stability analysis
- Example
- Conclusions

I ntroduction

Railway timetable stability

- The property that a timetable is able to recover from initial delays and primary delays (due to process time variations) without rescheduling
- How can stability performance be evaluated?

I ssues

- Primary delays are unavoidable
- Secondary delays depend on primary delays and timetable
- Delay propagation of initial, primary, and secondary delays must be kept within bounds
- Complex problem depending on timetable constraints (regular intervals, synchronization, no early departures), interconnection structure, infrastructure constraints, rolling stock circulations
- Delay recovery by effective time supplements and buffer times

Stochastic max-plus linear systems

- Event time of the k-th occurrence of event $i: X_{i}(k)$

DE.g. arrival time, departure time, passage time at any 'timetable point'

- Process time from event j to k-th occurrence of event $i: a_{i j}(k)$

DE.g. running time, dwell time, transfer time, minimum headway time, turnaround time, ...

- An event occurs only if each preceding process from a predecessor event j has finished:

$$
x_{i}(k)=\max _{j}\left(a_{i j}(k)+x_{j}(k-1)\right), \quad k \geq 1
$$

- Let $a_{i j}(k)=-\infty$ if j is not a predecessor of i, then

$$
x_{i}(k)=\max _{j=1, \ldots, n}\left(a_{i j}(k)+x_{j}(k-1)\right), \quad k \geq 1
$$

I ntermezzo

Max-plus algebra

Conventional algebra

- Define for real numbers and $-\infty$

$$
a \oplus b=\max (a, b)
$$

$a \otimes b=a+b$

- Define for matrices

$$
\begin{array}{lr}
(A \oplus B)_{i j}=a_{i j} \oplus b_{i j}=\max \left(a_{i j}, b_{i j}\right) & (A+B)_{i j}=a_{i j}+b_{i j} \\
(A \otimes B)_{i j}=\bigoplus_{l=1}^{n}\left(a_{i l} \otimes b_{l j}\right)=\max _{l=1, \ldots, n}\left(a_{i l}+b_{l j}\right) & (A B)_{i j}=\sum_{l=1}^{n}\left(a_{i l} \times b_{l j}\right) \\
(c \otimes A)_{i j}=c \otimes a_{i j}=c+a_{i j} & (c A)_{i j}=c \times a_{i j}
\end{array}
$$

Stochastic max-plus linear systems

- Vector of k-th event times $x(k)$
- Matrix of process times $A(k)=\left(a_{i j}(k)\right)$
- Then event times satisfy linear system equations in max-plus algebra:

$$
x(k)=A(k) \otimes x(k-1), \quad k \geq 1
$$

- Note:

$$
\begin{aligned}
x_{i}(k) & =(A(k) \otimes x(k-1))_{i} \\
& =\bigoplus_{j=1}^{n}\left(a_{i j}(k) \otimes x_{j}(k-1)\right) \\
& =\max _{j=1, \ldots, n}\left(a_{i j}(k)+x_{j}(k-1)\right)
\end{aligned}
$$

- A random matrix A corresponds to a directed graph $G(A)=(V, E)$, with $V=\{1, \ldots, n\}$ and $E=\left\{(j, i) \mid a_{i j} \neq-\infty\right\}$, with random arc weights

Stochastic max-plus linear systems

Stochastic max-plus linear system

- Periodic timetable: vector of k-th scheduled event times $d(k)$

$$
d(k)=d_{0} \otimes T^{\otimes k}=\left(d_{i}(0)+k \cdot T\right)
$$

with cycle time T and basic scheduled event times $d_{i}(0) \in[0, T)$

- The scheduled railway system satisfies

$$
x(k)=A(k) \otimes x(k-1) \oplus d(k), \quad x(0)=x_{0}
$$

with initial condition x_{0} : the initial event times at the start of the day

- The matrices $A(k)$ represent the primary process times which may generate primary delays when exceeding the scheduled process times
- The secondary delays are computed from the system equations when events have to wait for delayed preceding processes

Stochastic max-plus linear systems

Assumptions and properties

- An entry $a_{i j}(k)$ is either nonnegative or $-\infty$ for all k (fixed support)
- The finite entries $a_{i j}(k)$ are integrable nonnegative random variables (possibly dependent within the same period k)
- $\{A(k) \mid k \geq 1\}$ is a stationary or i.i.d. sequence of random matrices
- For simplicity: $A(k)$ is irreducible, i.e., $G(A(k))$ is strongly connected
- For simplicity: $A(k)$ has cyclicity 1
- A (scheduled) stochastic max-plus linear system

$$
x(k)=A(k) \otimes x(k-1) \oplus d(k), \quad x(0)=x_{0}
$$

is a stochastic event graph (stochastic decision-free Petri net)

Max-plus ergodic theory

- What is the behaviour of the event time sequence $\{x(k)\}_{k \geq 0}$, defined by the autonomous system (trains do not wait on timetable)

$$
x(k)=A(k) \otimes x(k-1), \quad x(0)=x_{0}
$$

- There exists a fixed cycle time λ, such that for each i and any $x_{0} \geq 0$,

$$
\lim _{k \rightarrow \infty} \frac{x_{i}(k)}{k}=\lim _{k \rightarrow \infty} \frac{\mathrm{E}\left[x_{i}(k)\right]}{k}=\lim _{k \rightarrow \infty} \mathrm{E}\left[x_{i}(k)-x_{i}(k-1)\right]=\lambda
$$

- So the asymptotic behaviour is independent from the initial condition
- The value λ depends only on the structure and probability distribution of the random matrices $A(k)$ and is called its Lyapunov exponent

Stochastic stability analysis

- What is the behaviour of the event time sequence $\{x(k ; T)\}_{k \geq 0}$, defined by the scheduled system

$$
\begin{array}{ll}
x(k)=A(k) \otimes x(k-1) \oplus d(k), & x(0)=x_{0} \\
d(k)=T \otimes d(k-1), & d(0)=d_{0}
\end{array}
$$

- Proposal: A scheduled system is stable if for the primary process time distributions and any initial condition the cycle time equals T,

$$
\lim _{k \rightarrow \infty} \frac{x_{i}(k ; T)}{k}=T
$$

- For each i and any $x_{0} \geq 0$, the cycle time for the scheduled system is

$$
\lim _{k \rightarrow \infty} \frac{x_{i}(k ; T)}{k}=\lim _{k \rightarrow \infty} \frac{\mathrm{E}\left[x_{i}(k ; T)\right]}{k}=\lambda \oplus T
$$

- A scheduled railway system is stable iff $\lambda<T$

Stochastic stability analysis

- Delay sequence $\{z(k)\}$ is defined by

$$
\begin{array}{ll}
x(k)=A(k) \otimes x(k-1) \oplus d(k), & x(0)=x_{0} \\
d(k)=T \otimes d(k-1), & d(0)=d_{0} \\
z(k)=x(k)-d(k) &
\end{array}
$$

- Proposal: A timetable is realizable if for zero initial delays, $x_{0}=d_{0}$, any delays generated by the primary process time distributions can settle,

$$
\liminf _{k \rightarrow \infty} z\left(k ; d_{0}\right)=0
$$

- Note: the delay sequence $z(k)$ will generally not converge to zero, since there will always be primary delays generating a new sequence of secondary delays
- Liminf implies that delays always settle, although new delays can occur

Example

- Periodic timetable: $d_{0}=(31,30,0,1,21,56,26,56)^{\prime}, T=60$
- Primary process times are shifted Gamma distributed, where the shift is the minimum process time indicated in the figure
- The mean and standard deviation are given in percentage of the minimum process times, the Gamma parameters are estimated by matching moments

Ėxample

- PDF of running time from station 1 to station 2

Example

- Cycle time as a function of mean and standard deviation as percentage of the minimum process times

	Standard deviation σ					
Mean μ	0%	1%	2%	3%	4%	5%
0%	58.0	-	-	-	-	-
1%	58.6	58.6	58.6	58.7	58.9	59.0
2%	59.2	59.2	59.2	59.3	59.5	59.6
3%	59.7	59.7	59.8	59.9	60.0	60.2
4%	60.3	60.3	60.3	60.4	60.6	60.8
5%	60.9	60.9	61.0	61.0	61.2	61.4

- The deterministic system becomes critical when process times are increased by 3.45%, random systems with this mean are unstable

Conclusions

- Timetable stability of large scale networks can be tested for arbitrarily distributed process times using stochastic max-plus stability analysis
- A fast algorithm based on perfect simulation has been developed for estimating the Lyapunov exponent of a given stochastic system
- Primary process times can have arbitrary distributions (with finite mean)
- Dependencies through cycles in the network are no problem
- Sensitivity analysis of distribution parameters gives insight in stability robustness

