

Stochastic micro-simulation as a timetable robustness estimation tool D. Huerlimann, G. Longo and G. Medeossi

Zurich, February 11th 2009

Introduction

- Growing importance of precision in planning process
- Trade off capacity-punctuality
- Wide range of real-world collected data
- Micro-simulation can consider most stochastic phenomena

- Ex-ante timetable robustness evaluation
 - Point out critical points and suggest dispatching rules
- Evaluation of headway times

Outline

- Timetable robustness measures
- New reliability indicator
- Model calibration
- Se study: Torino

Approach

- Model Calibration
- Dense timetable (Fiche UIC 406)
 - 🎽 real train mix
 - 👻 running times with no supplements
- Solution Variable buffer times and supplements are inserted
- Multiple stochastic simulations
- Simulation output analysis

New reliability indicator

Frequency of Delay Index (F)

RailZurich 09

New reliability indicator

RailZurich 09

Data flow

"Micro" Analyzer

Acceleration	Acceleration Percentage Gradients Tractive Effort/Speed Curve	Distributions Running Time Calculator On Time / Delay
Full Speed	Real Speed ATP	Distributions On Time / Delay
Braking	Braking Behavior Gradients Planned BWP	Distributions On Time / Delay
Stop Time		Distributions On Time / Delay

Acceleration Analysis

RailZurich 09

Braking Analysis

Case Study: Torino Node

Frequent perturbations due to node saturation or delayed trains from Milan

RailZurich 09

Torino Node: Results

Dense Timetable

Compensation of stochastic phenomena

- Buffer times
- Supplements
 - 🗳 distributed
 - 🗳 concentrated
 - 🗳 stop time

Arrival % with less than 3' delay as a function of buffer times and supplements

RailZurich 09

Buffer time and initial delay

Conclusions and outlook

- Very precise traffic representation
- Combination of "micro" and "macro" data
- Relationship between various parameters
- Search for a capacity stability equilibrium
- Solution Systems Various block and ATP Systems
- Fit of resulting curves to obtain rules
- Other case studies

Università degli Studi di Trieste

or your attention!

 dott. ing. STEFANO de FABRIS
 prof. ing. GIOVANNI LONGO
 dott. ing. GIORGIO MEDEOSSI

 stefano.defabris@units.it
 longo@dica.units.it
 giorgio.medeossi@units.it