Stochastic micro-simulation as a timetable robustness estimation tool

Introduction

- Growing importance of precision in planning process

Q Trade off capacity-punctuality
Q Wide range of real-world collected data
Q Micro-simulation can consider most stochastic phenomena

Q Ex-ante timetable robustness evaluation

- Point out critical points and suggest dispatching rules

Q Evaluation of headway times

Oufline

Q Approach
Q Timetable robustness measures
Q New reliability indicator
Q Model calibration
Q Case study: Torino

Approach

9 Real Traffic Analysis

- Model Calibration

Q Dense timetable (Fiche UIC 406)
© real train mix
running times with no supplements
Q Variable buffer times and supplements are inserted
Q Multiple stochastic simulations
Q Simulation output analysis

New reliability indicator

Frequency of Delay Index (F)

New reliability indicator

Train Family	Station	Arr/ Dep	10	30	$\begin{array}{r} {[\%]} \\ 50 \end{array}$	70	90	P	F \diamond.
20000s	Trofarello	Arr						74.9	67.0
2150s	Torino Porta Nuova	Arr				-		75.2	70.6
10050s	Collegno	Arr						82.0	61.4
10051s	Torino Porta Nuova	Arr						88.9	46.1
10050s	Torino Porta Nuova	Dep						71.7	77.2
4000s	Chivasso	Dep						79.9	65.1

Data flow

"Micro" Anclyzer

Acceleration

Acceleration Percentage
Gradients Tractive Effort/Speed Curve On Time / Delay

Real Speed ATP

Distributions
On Time / Delay

Braking Behavior Gradients Planned BWP

Distributions
Running Time Calculator

Braking

Stop Time

Distributions
On Time / Delay

Distributions
On Time / Delay

Acceleration Anclysis

Braking Anclysis

Case Study: Torino Node

Q 180 km line, different interlocking systems
Q Various train mix
Q Frequent perturbations due to node saturation or delayed trains from Milan

Torino Node: Resulis

Dense timetable

Compensation of stochastic phenomena

Q Buffer times
Q Supplements
\& distributed
© concentrated
stop time

Buffer fimes and running fime supplements

Arrival \% with less than 3^{\prime} delay as a function of buffer times and supplements

Buffer time and inifial delay

Delay propagation as a function of initial delay and buffer times

Conclusions and outlook

Q Very precise traffic representation
Q Combination of "micro" and "macro" data

- Relationship between various parameters
- Search for a capacity - stability equilibrium

Q Various block and ATP Systems
Q Fit of resulting curves to obtain rules
Q Other case studies

dott. ing. STEFANO de FABRIS prof. ing. GIOVANNI LONGO dott ing GIORGIO MEDEOSSI stefano.defabris@units.it
longo@dica.units.it oiorgiotmedeoss@unitsit

