A study of an incremental texture-based heuristic for the train routing and scheduling problem

Joaquín Rodriguez, Sonia Sobieraj joaquin.rodriguez@inrets.fr, sonia.sobieraj@inrets.fr

French National Institute for Transport and Safety Research

3rd ISROR RailZurich 2009, 11-13 February 2009

Institut national de recherche sur les transports et leur sécurité

Outline

- Scope
- Problem description
- Motivation
- 2 Constraint Based Scheduling model
- 3 Resolution methods

4 Experiments

Scope Problem description Motivation

Rail traffic management - Scope

Rail Traffic managent problems

Off-line timetabling Real time traffic management

- \rightarrow hight-quality timetables
- → modify the timetables to reduce the impact traffic of incidents

Scope Problem description Motivation

Rail traffic management - Scope

Rail Traffic managent problems

Off-line timetabling

Real time traffic management

- \rightarrow hight-quality timetables \rightarrow modify the timetables to
 - modify the timetables to reduce the impact traffic of incidents

Conclusion

Scope Problem description Motivation

Rail traffic management - Scope

Real time traffic management

Geographical organisation :

- National control center
- Regional control centers
- Local control centers (e.g.stations, ...)

Conclusion

Scope

Rail traffic management - Scope

Real time traffic management

Geographical organisation :

- National control center
- Regional control centers
- **Local control centers** (e.g.stations, ...) ۲

Scope Problem description Motivation

Rail traffic management - Scope

Real time traffic management problem

A station traffic control center

Scope Problem description Motivation

Rail traffic management - Problem description

Conclusion

Real time traffic management problem

Events

- Technical failures, disturbances,
- Additional trains, track maintenance works, ...
- \Rightarrow primary delays
- Interaction between train runs may cause propagation of primary delays
 - ⇒ secondary delays (knock-on delays)

Scope Problem description Motivation

Rail traffic management - Problem description

Real time traffic management problem

• Solve the problem :

 $\left\{\begin{array}{l} \min(\sum secondary \ delays)\\ s.t.\\ Satisfy the safety and operational constraints\\ between train runs\end{array}\right.$

- Dispatcher decisions to reduce/avoid propagation :
 - change train routes
 - change train schedules

Rail traffic management

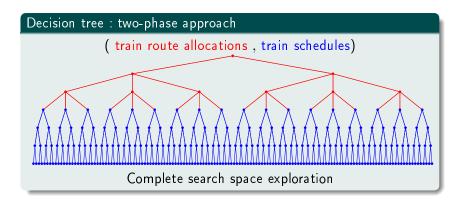
Constraint Based Scheduling model Resolution methods Experiments Conclusion Scope Problem description Motivation

Rail traffic management - Motivation

Resolution methods

Two-phase approach

With global decisions :

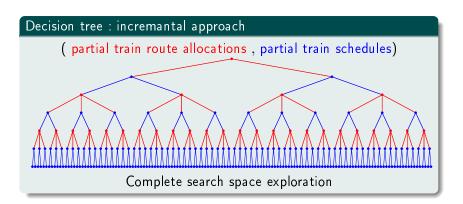

Train route allocation Train schedule

Incremental approach

With local decisions : Track section allocation Track section movement schedule

Scope Problem description Motivation

Rail traffic management - Motivation



Rail traffic management Constraint Based Scheduling model Resolution methods

> Experiments Conclusion

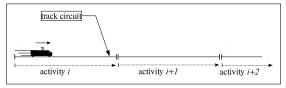
Scope Problem description Motivation

Rail traffic management

J. Rodriguez, S. Sobieraj (INRETS) An incremental texture-based heuristic for the train routing and scheduling 10 / 25

Rail traffic management

Constraint Based Scheduling model Resolution methods Experiments Conclusion Scope Problem description Motivation


Rail traffic management - Motivation

Objectives

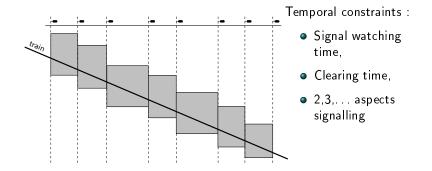
- New heuristic resolution method based on local decisions,
- Compare with a previous resolution method based on global decisions.

Constraint Based Scheduling model

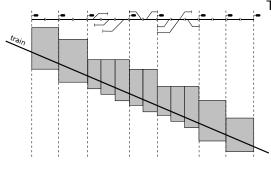
- Our model is based on schedule theory : The real time traffic management problem is a kind of «joint resource allocation and scheduling » problem
- A train is a «job», i.e. a sequence of «activities»,
- Activities require track section «ressources».

Constraint Based Scheduling model

Model		
Train movements on track sections	\mapsto	Activities
Track sections Opposite direction conflicts	\mapsto	Unary Resources State Resources
Alternative routes Trains schedule, Block/ Interlocking system	\mapsto	Resource constraints


Constraint Based Scheduling model

Time over distance diagram


Constraint Based Scheduling model

Time over distance diagram

Constraint Based Scheduling model

Time over distance diagram

Temporal constraints :

- Signal watching time,
- Clearing time,
- 2,3,... aspects signalling
- Sectional route release (interlocking)

Resolution methods

Solving a joint scheduling and resource allocation problem :

Two phases approach - TPH

- Complete resource allocation
- Omplete scheduling

Incremental approach - INC

Repeat

(Partial resource allocation) or (Partial scheduling)

Until a complete solution is found.

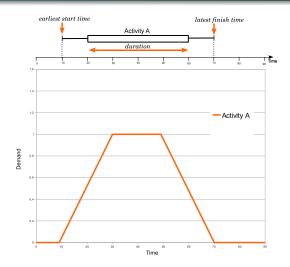
Resolution methods

Two phases approach - TPH

Algorithm :

- **O** Assign routes to all trains
- Schedule all activities of trains («Rank» algorithm of Ilog Scheduler)
- Set the time variables of activities of trains to the earliest value

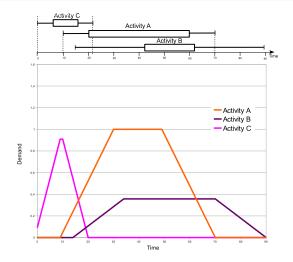
Resolution methods


Incremental approach - INC

Algorithm :

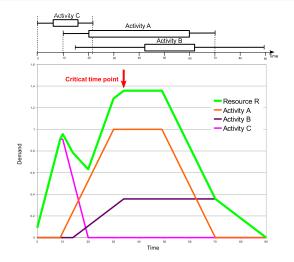
- Identifies a resource R with the critical time point,
- Let A,B two unsequenced activities which require R on the critical time point,
- Let C an activity which requires R on the critical time point and that still have alternative resources,
- Choose between :

 $(A \prec B)$ or $(B \prec A)$ or (resource(C) = R) or (resource(C) \neq R).


Resolution methods - Critical time point

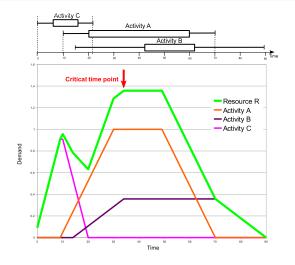
Example of calculation of the contention for a resource $R\,:\,$

 Individual demand of an activity A


Resolution methods - Critical time point

Example of calculation of the contention for a resource $R\,:$

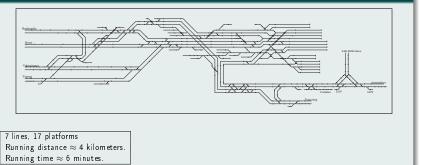
 Individual demand of an activity A, B and C


Resolution methods - Critical time point

Example of calculation of the contention for a resource R :

- Individual demand of an activity A, B and C
- Aggregated demand as a measure of the contention for R

Resolution methods - Critical time point



Example of calculation of the contention for a resource R :

- Individual demand of an activity A, B and C
- Aggregated demand as a measure of the contention for R
- The curves are updated during search to get algorithms that implement dynamic analyses («texture measurement»)

Experiments

The layout of the Lille-Flandres station

Experiments

Instance problems considered

Set of instance problems :

- Select a peak period with 40 trains,
- Alternative routes per train < 30,
- Instance L18 : compress the train schedule from 3600s to 2300s,
- Generate L17-L1 by removing 2 trains.

nst.	T	nb var.	nb ct.
L1	6	2279	2978
L2	8	4110	5382
L3	10	4702	6113
L4	12	6035	7600
L5	14	8506	10648
L6	16	9594	11977
L7	18	10645	13090
L8	20	11754	14323
L9	22	13225	16065

Inst.	T	nb var.	nb ct.
L10	24	13735	16641
L11	26	14860	17859
L12	28	15953	19094
L13	30	16869	20060
L14	32	17788	20971
L15	34	18599	21763
L16	36	19776	22923
L17	38	20908	24096
L18	40	22872	26130

J. Rodriguez, S. Sobieraj (INRETS) An incremental texture-based heuristic for the train routing and scheduling 20 / 25

Experiments

Configurations considered in the study

- NoSRCt + TPH : Model **without** the state resource constraints (NoSRCt) and the two-phase resolution method (TPH),
- SRCt + TPH : Model with the state resource constraints (SRCt) and the two-phase resolution method,
- SRCt + INC : Model with the state resource constraints (SRCt) and the incremental resolution method.
- **Stop condition :** 180 s CPU time limit (including setup and preprocessing of data)

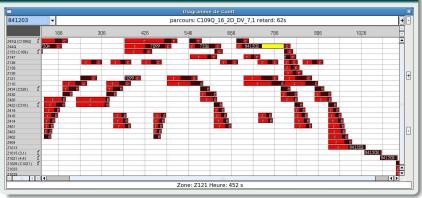
Experiments

Results

		NoSI	RCt + TPH	SRCt + TPH		SRCt + INC	
inst.	T	BS	CPU	BS	CPU	BS	CPU
L1	6	0	0.88	0	0.98	0	1.04
L2	8	197	1.12	197	1.59	197	1.68
L3	10	197	1.3	197	1.96	197	1.84
L4	12	197	6.18	197	11.36	197	2.38
L5	14	304	1.25	304	2.91	197	3.33
L6	16	304	6.43	304	5.42	197	3.73
L7	18	304	128.61	304	31.54	197	4.04
L8	20	-	-	665	139.51	223	4.33
L9	22	-	-	869	10.86	223	4.94
L10	24	-	-	880	51.52	223	9.03
L11	26	-	-	1081	155.32	297	14.76
L12	28	-	-	1097	153.93	297	19.52
L13	30	-	-	1423	4.1	353	53.8
L14	32	-	-	1463	170.8	561	15.31
L15	34	-	-	1741	4.58	561	16.03
L16	36	-	-	1841	5.06	561	17.41
L17	38	-	-	1870	5.44	561	19.59
L18	40	-	-	2133	7.13	758	26.53

- (NoSRCt+TPH) improves the greedy solution for 7 instances and find no solution for the other instances
- (SRCt+TPH) improves the greedy solution for 14 instances
- (SRCt+INC) gives the best results.

Experiments


Two-phase method (TPH) versus incremental method (INC)

J. Rodriguez, S. Sobieraj (INRETS) An incremental texture-based heuristic for the train routing and scheduling 23 / 25

Experiments

The Gantt chart for a solution

Conclusion

- A model of the train routing and scheduling problem,
- Our model is able to consider a large number of technical and commercial characteristics drawn from real situations.
- A two-phase method has been compared with an **incremental method**.
- The incremental method shows very promising results.
- Futur work :
 - Apply the heuristic to local search methods,
 - Link the model with a speed coordination module to consider train speed profiles.