

Examination of operation quality for highfrequent railway operation

Alex Landex, al@transport.dtu.dk

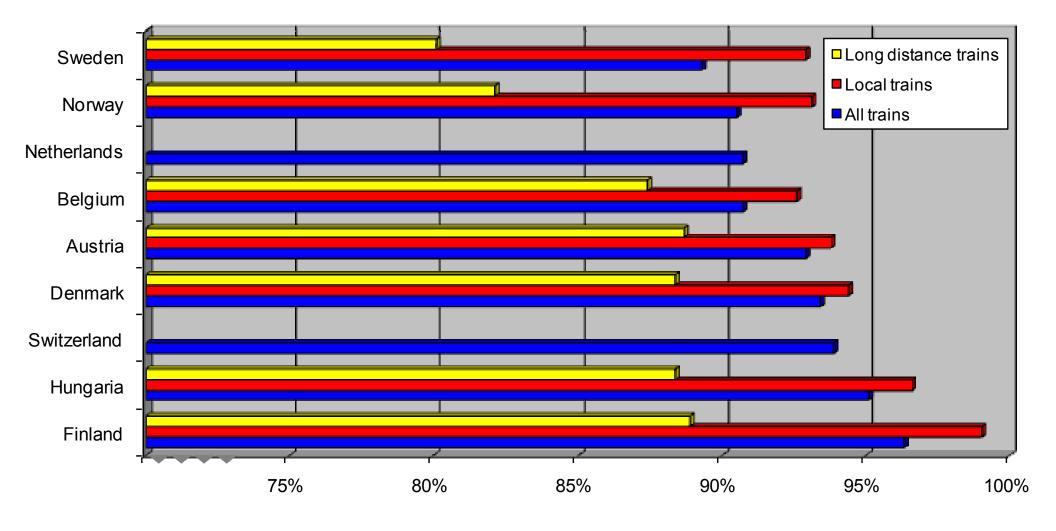
Anders H. Kaas, Anders.H.Kaas@atkinsglobal.com

DTU Transport Institut for Transport

Agenda

- Traditional assessment of punctuality
- Operation quality for high-frequent railway operation
 - Service frequency
 - Travel time
 - Combined approach
 - Passenger delay model
- Overview
- Conclusions

PENINSULA CORRIDOR SERVICE
A SAFE TEAM-ON TIME
CALTRAIN ON TIME PERFORMANCE YESTERDAY 100. MONTH TO DATE 99.45 YEAR TO DATE 99.11
EMPLOYEE INJURIES TOTAL 1
REPORTABLE 0 LOST TIME 0
FY 2006 PLAN 1 REPORTABLE 23
AMTRAK POLICE 1-800-331-0008
REMEMBER TO SPIKE DOWN FOR SAFETY" "SPIKE DOWN FOR SAFETY" HAVE YOU BEEN CAUGHT WITH YOUR SPIKE YET? RULE OF WEEK 9,12
SAFETY RULE OF THE DAY FOR TRANSPORTATION EMPLOYEES 560 4 CURRENT TO SEP 15 2006 MAINTAINED BY CHUCK HERNDON


10-02-2009 Examination of operation quality for high-frequent railway operation

Traditional statement of punctuality

- When is a train delayed?
 - Danish S-train 21/2 minutes
 - The Netherlands 3 minutes (departure)
 - Germany 5 minutes (line end station)
 - Danish Regional and Intercity trains 6 minutes
 - Danish freight trains 10 minutes
 - Great Britain 5 and 10 minutes respectively
 - AmTrack dependent on the lenght of the train route (not length of passengers' route)

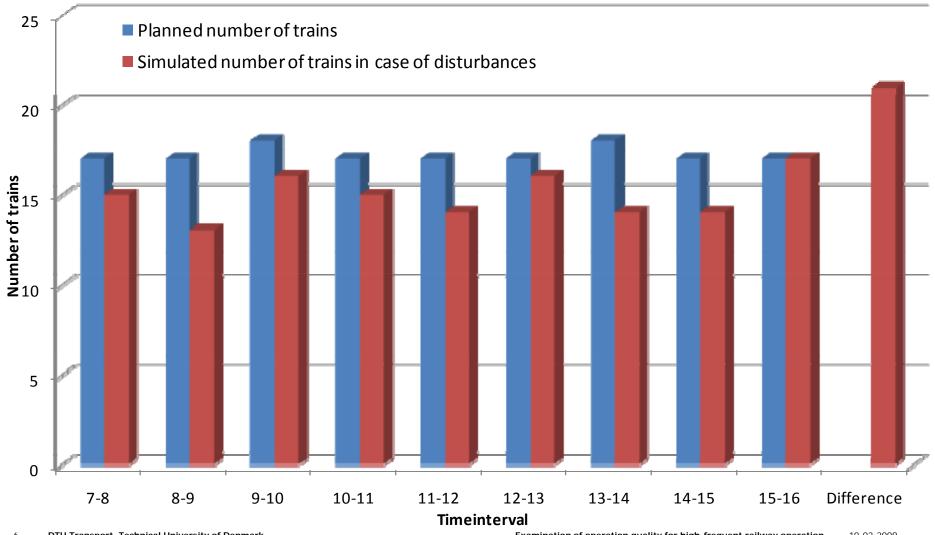
- When are the trains registered?
 - Arrival at station
 - Departure from station
 - Arrival at line end station
- Goal for punctuality
 - Denmark 90%
 - S-train 95%
 - The Netherlands 90%
 - AmTrack Long distance 70%
 - AmTrack Short distance 85%
 - AmTrack Corridor trains 90%
 - AmTrack Premium trains 94%
 - AmTrack Contract based commuter trains 95%

Punctuality

4 DTU Transport, Technical University of Denmark

Examination of operation quality for high-frequent railway operation 10-02-2009

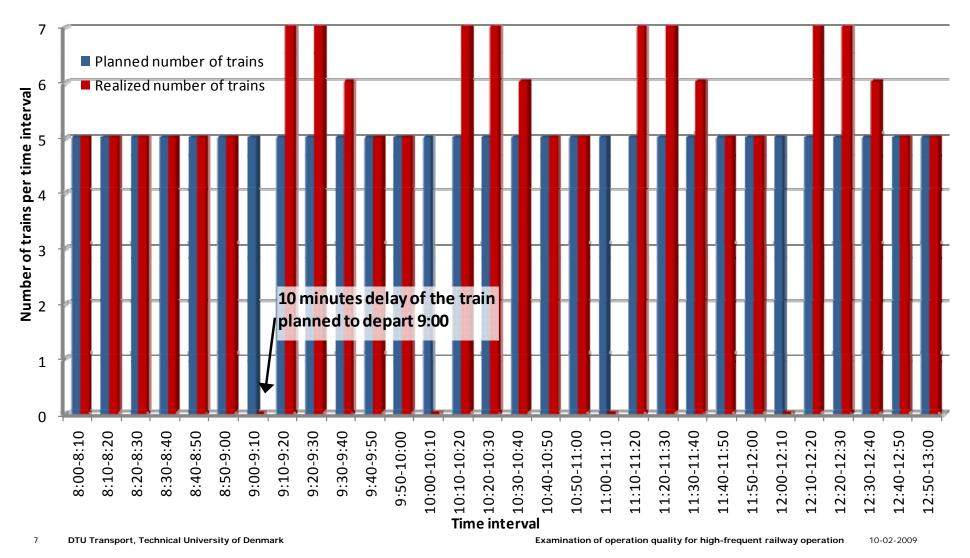
Traditional assessment of punctuality


Advantages

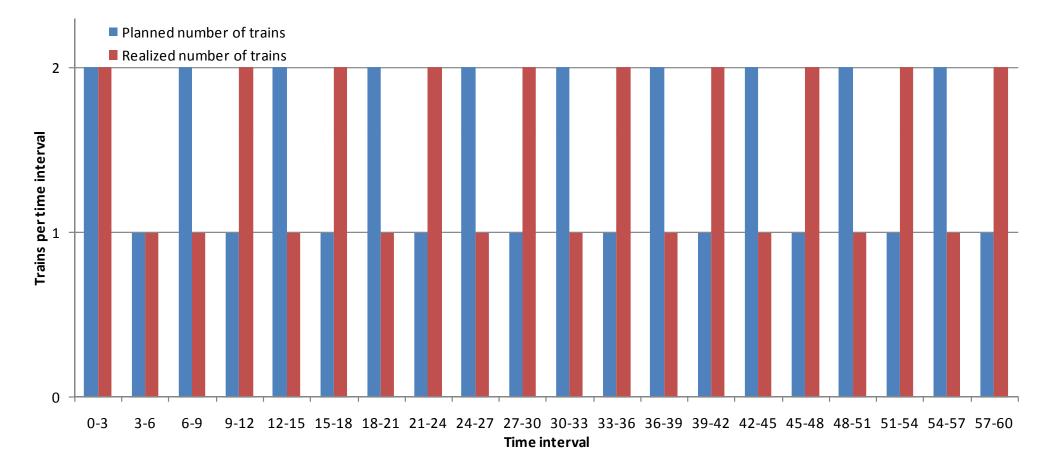
- Low complexity
- Only planned and realized timetables are required

- Not well-suited for high-frequent operation
- Travel time not taken into account

DTU


Service frequency

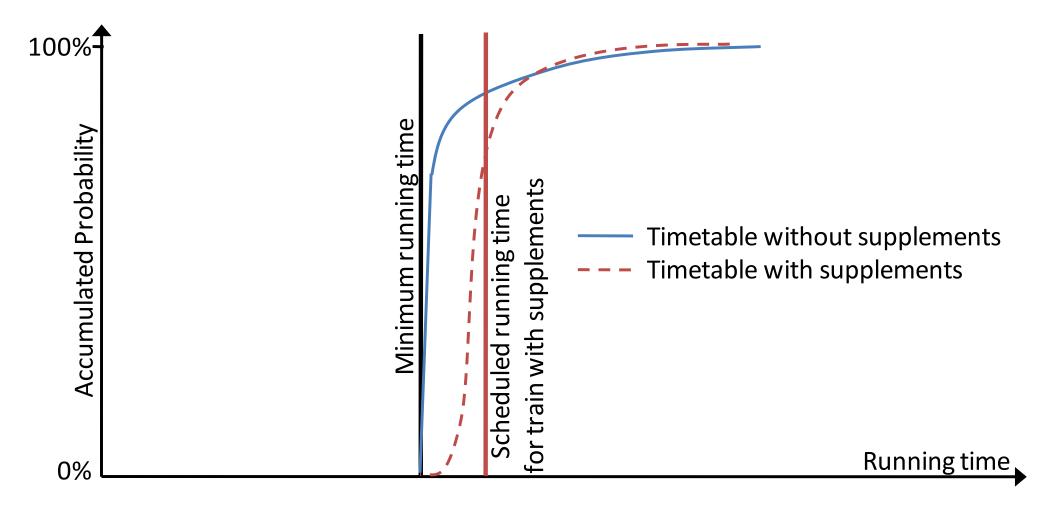
DTU Transport, Technical University of Denmark 6


Examination of operation quality for high-frequent railway operation 10-02-2009

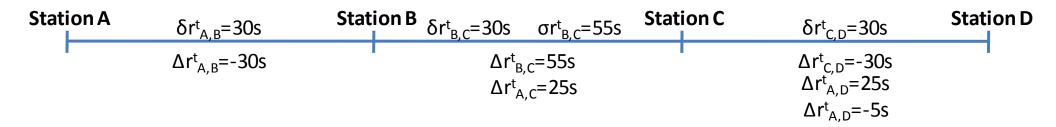
Long time intervals can hide flucturations

Too short intervals

Service frequency


Advantages

- Low complexity
- Reliability taken into account
- Requires the realized timetable only


- Works for high frequent operation only
- Travel time not taken into account
- The examined railway line only can be taken into account – not the entire network
- The time intervals are crucial

Time supplements vs. no supplements

Travel time delays

 σr^t : delay δr^t : time supplement Δr^t : time difference from published timetable

Travel time

Advantages

- Low complexity
- Requires the realized timetable only
- Travel time is taken into account

- Works best for high frequent operation
- Frequency not taken into account
- The examined railway line only can be taken into account – not the entire network

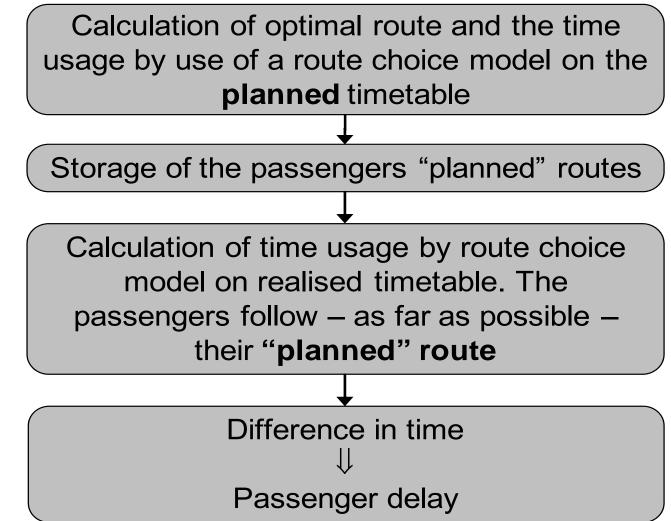
Combined approach

The service frequency and travel time approaches can be combined

- Combined approach

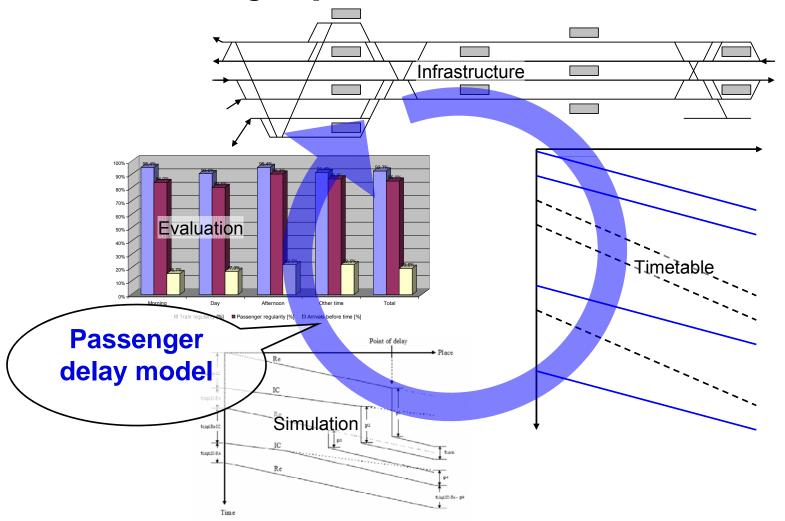
Advantages

- Low complexity
- Reliability taken into account
- Travel time is taken into account
- · Requires the realized timetable only

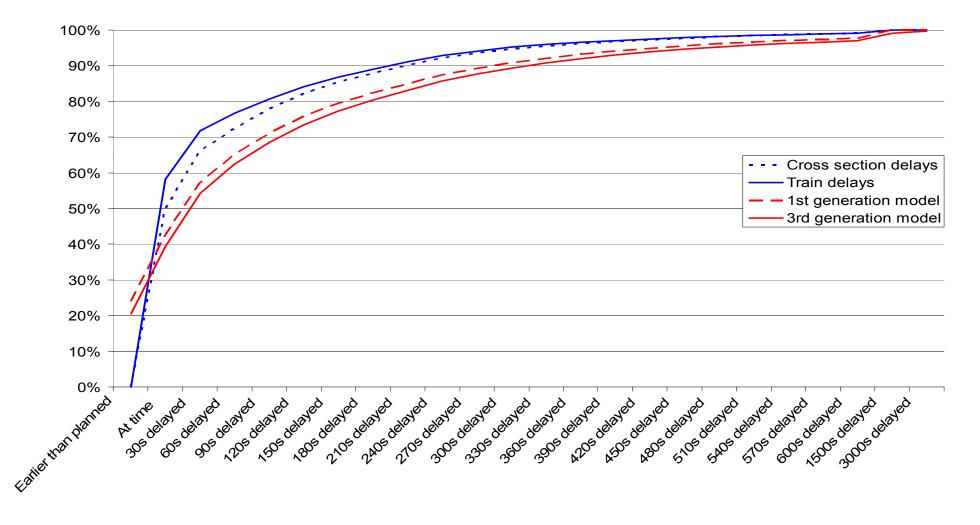

- Works best for high frequent operation
- The examined railway line only can be taken into account – not the entire network
- The time intervals are crucial

Passenger delay models

- 0th generation
 - Train delay multiplied with the amount of passengers
- 1st generation
 - Route choice model
 - Full knowledge
- 1¹/₂ generation
 - Route choice model
 - Full knowledge is achieved when the passengers arrive at the station
- 2nd generation
 - Passengers know the delay distributions and take this into account when considering their route according to 1st generation models
- 3rd generation
 - Passengers plan their route according to the planned timetable
 - Passengers reconsider their route at that point in time and space where a certain threshold of delay is achieved
 - When passengers reconsider their route full knowledge is assumed


	Train delays (0 th generation)	Cross section delays (0 th generation)	Counting train delays (0 th generation)	Optimal route choice model (1 st generation)	1½generation model	Passenger delay model (2 rd generation)	Passenger delay model (3 rd generation)
Considerations of passenger delays	No	Partly	Partly	Partly	Partly	Yes	Yes
Complexity of the method	Very simple	Low	Low	Medium	Medium	High	High
Needs of information on passenger demand	No	Average alighting passengers	Counted passengers	OD matrix	OD matrix	OD matrix	OD matrix
Passengers may predict delays in the future (full information is assumed)	No	No	No	Yes	Yes	Partly	Can be incorporated
Passengers may arrive before time if a better con- nection emerges	No	No	No	Yes	Yes	Yes	Yes
Accuracy	Very low	Quite low	Fairly low	Low	Medium	Medium	High
Bias	Mostly under- estimates delays	Will quite often under- estimate delays	Will fairly often under- estimate delays	Large under- estimation of delays	Under- estimates delays	No sys- tematic bias	No system- atic bias

3rd generation passenger delay models



Coupling of the passenger delay model with railway operation simulation tools

Simulated passenger delays

Passenger delay approach

Advantages

- Takes the passengers' experience into account
 - 3rd generation models are at present the most advanced models in daily use
- Can be used for evaluation of both high and low frequent operation
- Can include both a single railway line or the entire network
 - Includes transfers
- Additional information about inconveniences for passengers
 - e.g. unscheduled transfers

20 DTU Transport, Technical University of Denmark

- Data intensive
 - Planned timetable
 - Realized timetable
 - Origin-Destination matrix divided into time intervals
- High degree of complexity
- Requires calibration of the model

Overview

	Service frequency	Travel time	Combined approach	Passenger delay
Frequency	Yes	No	Yes	Implicitly/Yes
Reliability	Yes	No	Yes	Yes
In vehicle time	No	Yes	Yes	Yes
Total travel time	No	No	Rough estimate	Yes
Capacity restrictions	No	No	No	Can be incorporated
Complexity	Low	Low	Low	Medium to high
Required data	Realized timetable	Realized timetable	Realized timetable	Planned and realized timetables & OD-matrix
Include transfers	No	No	No	Yes
Entire network	No	No	No	Yes
Low frequency	Partly	Partly	Partly	Yes
Changed route choice	No	No	No	Yes
Load factor of trains	No	No	No	Yes
Future operation	No	No	No	Yes
Precision	Low	Low	Below medium	High

Conclusions

- "Traditional" assessments of punctuality is not the best method for highfrequent railway operation
- Simple approaches to assess operation quality for high-frequent operation
 - Service frequency
 - Running time
 - Travel time
- Operation quality does not necessarily reflect passengers' experience
- 3rd generation passenger delay models reflects passengers' experience the best
 - Can be used for all frequencies
 - Can examine the entire network as well as a particular railway line
 - Can be combined with railway operation simulation software to guesstimate future delays
 - Data intensive

Thank you for your attention

Alex Landex Technical University of Denmark Department of Transport al@transport.dtu.dk